OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7046–7056

Impact of structural deformations on polarization conversion in high index contrast waveguides

Kuniaki Kakihara, Naoya Kono, Kunimasa Saitoh, Takeshi Fujisawa, and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7046-7056 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The objective of this paper is the detailed study of polarization conversion in deformed high index contrast (HIC) waveguides. The type of deformation considered here is the slanted sidewalls of buried channel waveguides. Polarization conversion of HIC waveguides are investigated for possible core refractive indices ranging from 2 (SiN x ) to 3.5 (Si), by using numerical schemes based on the finite-element and beam propagation methods. The numerical results show that polarization conversion can be greatly magnified in HIC channel waveguides. For example, in Si-wire waveguides, complete polarization conversions can occur within just tens of micrometers.

© 2006 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(260.5430) Physical optics : Polarization

ToC Category:
Integrated Optics

Original Manuscript: June 7, 2006
Revised Manuscript: July 27, 2006
Manuscript Accepted: July 31, 2006
Published: August 7, 2006

Kuniaki Kakihara, Naoya kono, Kunimasa Saitoh, Takeshi Fujisawa, and Masanori Koshiba, "Impact of structural deformations on polarization conversion in high index contrast waveguides," Opt. Express 14, 7046-7056 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997). [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998). [CrossRef]
  3. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001). [CrossRef]
  4. A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001). [CrossRef]
  5. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  6. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005). [CrossRef]
  7. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005). [CrossRef]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005). [CrossRef] [PubMed]
  9. G. R. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Opt. Express 13, 10102-10108 (2005). [CrossRef] [PubMed]
  10. C. Li, N. Ma, and A. W. Poon, "Waveguide-coupled octagonal microdisk channel add-drop filters," Opt. Lett. 29, 471-473 (2004). [CrossRef] [PubMed]
  11. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004). [CrossRef]
  12. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005). [CrossRef]
  13. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13, 10109-10114 (2005). [CrossRef] [PubMed]
  14. N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984). [CrossRef]
  15. C.-C. Lee, H.-L. Chen, J.-C. Hsu, and C.-L. Tien, "Interference coatings based on synthesized silicon nitride," Appl. Opt. 38, 2078-2082 (1999). [CrossRef]
  16. K. Takada and S. Mitachi, "Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference," J. Lightwave Technol. 16, 1413-1422 (1998). [CrossRef]
  17. B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002). [CrossRef]
  18. N. Somasiri and B. M. A. Rahman, "Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls," J. Lightwave Technol.,  21, 54-60 (2003). [CrossRef]
  19. S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, "Numerical modeling of polarization conversion in semiconductor electro-optic modulators," Appl. Opt. 44, 1032-1038 (2005). [CrossRef] [PubMed]
  20. E. D. Finlayson, J. M. Heaton, B. M. A. Rahman, S. S. A. Obayya, "Polarization conversion in passive deep-etched GaAs/AlGaAs waveguides," J. Lightwave Technol. 24, 1425-1432 (2006). [CrossRef]
  21. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  22. K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001). [CrossRef]
  23. V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996). [CrossRef]
  24. M. Fontaine, "Theoretical approach to investigating cross-phase modulation phenomena in waveguides with arbitrary cross sections," J. Opt. Soc. Am. B 14, 1444-1452 (1997). [CrossRef]
  25. C. K. Madsen, "Optical all-pass filters for polarization mode dispersion compensation," Opt. Lett. 25, 878-880 (2000). [CrossRef]
  26. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003). [CrossRef]
  27. M. R. Watts and H. A. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited