OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7109–7124

A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography

Feng Gao, Huijuan Zhao, Yukari Tanikawa, and Yukio Yamada  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7109-7124 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence diffuse optical tomography (DOT) has attracted many attentions from the community of biomedical imaging, since it provides effective enhancement in imaging contrast. This modality is now rapidly evolving as a potential means of monitoring molecular events in small living organisms with help of molecule-specific contrast agents, referred to as fluorescence molecular tomography (FMT). FMT could greatly promote pathogenesis research, drug development, and therapeutic intervention. Although FMT in steady-state and frequency-domain modes have been heavily investigated, the extension to time-domain scheme is imminent for its several unique advantages over the others. By extending the previously developed generalized pulse spectrum technique for time-domain DOT, we propose a linear, featured-data image reconstruction algorithm for time-domain FMT that can simultaneously reconstruct both fluorescent yield and lifetime images of multiple fluorephores, and validate the methodology with simulated data.

© 2006 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 17, 2006
Revised Manuscript: July 24, 2006
Manuscript Accepted: July 24, 2006
Published: August 7, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Feng Gao, Huijuan Zhao, Yukari Tanikawa, and Yukio Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D.Y. Patthankar, A.U. Chen, B.W. Pogue, M.S. Patterson, and E.M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef]
  2. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  3. E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002). [CrossRef] [PubMed]
  4. E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002). [CrossRef]
  5. A.B. Milstein, S. Oh, K.J. Webb, C.A. Bouman, Q Zhang, D.A. Boas, and R.P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003). [CrossRef] [PubMed]
  6. K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002). [CrossRef]
  7. Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000). [CrossRef] [PubMed]
  8. R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999). [CrossRef] [PubMed]
  9. R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002). [CrossRef] [PubMed]
  10. V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002). [CrossRef] [PubMed]
  11. V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002). [CrossRef]
  12. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  13. A.T.N. Kumar, J. Skoch, B.J. Bacskai, D.A. Boas, and A.K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  14. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005). [CrossRef] [PubMed]
  15. S.R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004). [CrossRef] [PubMed]
  16. T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  17. A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002). [CrossRef]
  18. S.R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999). [CrossRef]
  19. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002). [CrossRef] [PubMed]
  20. R. Model, M. Orlt, and M. Walzel, "Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data," J. Opt. Soc. Am. A 14, 313-323 (1997). [CrossRef]
  21. M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999). [CrossRef] [PubMed]
  22. F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001). [CrossRef]
  23. E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002). [CrossRef]
  24. J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  25. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004). [CrossRef] [PubMed]
  26. Huijuan Zhao, Feng Gao, Yukari Tanikawa, Kazuhiro Homma, and Yukio Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005). [CrossRef]
  27. F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002). [CrossRef] [PubMed]
  28. W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials, (Academic, New York, 1979).
  29. A.C. Kak and M. Slaney, Principle of Computerized Tomographic Imaging, (IEEE Press, New York, 1988).
  30. F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998). [CrossRef]
  31. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Thromberg and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999). [CrossRef]
  32. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited