OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7159–7171

Optical coherence tomography of cell dynamics in three-dimensional tissue models

Wei Tan, Amy L. Oldenburg, James J. Norman, Tejal A. Desai, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7159-7171 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (5102 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Three-dimensional cell-based tissue models have been increasingly useful in the fields of tissue engineering, drug discovery, and cell biology. While techniques for building these tissue models have been advanced, there have been increasing demands for imaging techniques that are capable of assessing complex dynamic three-dimensional cell behavior in real-time and at larger depths in highly-scattering scaffolds. Understanding these cell behaviors requires advanced imaging tools to progress from characterizing two-dimensional cell cultures to complex, highly-scattering, thick three-dimensional tissue constructs. Optical coherence tomography (OCT) is an emerging biomedical imaging technique that can perform cellular-resolution imaging in situ and in real-time. In this study, we demonstrate that it is possible to use OCT to evaluate dynamic cell behavior and function in a quantitative fashion in four dimensions (three-dimensional space plus time). We investigated and characterized in thick tissue models a variety of cell processes, such as chemotaxis migration, proliferation, de-adhesion, and cell-material interactions. This optical imaging technique was developed and utilized in order to gain new insights into how chemical and/or mechanical microenvironments influence cellular dynamics in multiple dimensions. With deep imaging penetration and increased spatial and temporal resolution in three-dimensional space, OCT will be a useful tool for improving our understanding of complex biological interactions at the cellular level.

© 2006 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.5380) Medical optics and biotechnology : Physiology
(170.6900) Medical optics and biotechnology : Three-dimensional microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 31, 2006
Revised Manuscript: July 19, 2006
Manuscript Accepted: July 20, 2006
Published: August 7, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Wei Tan, Amy L. Oldenburg, James J. Norman, Tejal A. Desai, and Stephen A. Boppart, "Optical coherence tomography of cell dynamics in three-dimensional tissue models," Opt. Express 14, 7159-7171 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Langer and J. P. Vacanti, "Tissue engineering," Science 260, 920-926 (1993). [CrossRef] [PubMed]
  2. M. J. Friedrich, "Studying cancer in three dimensions: 3-D models foster new insights into tumorigenesis," JAMA 290, 1977-1979 (2003).
  3. D. J. Stephens and V. J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003). [CrossRef] [PubMed]
  4. R. G. M. Breuls, A. Mol, R. Petterson, C. W. J. Oomens, F. P. T. Baaijens, and C. V. C. Bouten, "Monitoring local cell viability in engineered tissues: A fast, quantitative, and nondestructive approach," Tissue Eng. 9, 269-281 (2003). [CrossRef] [PubMed]
  5. D. S. Gareau, P. R. Bargo, W. A. Horton, and S. L. Jacques, "Confocal fluorescence spectroscopy of subcutaneous cartilage expressing green fluorescent protein versus cutaneous collagen autofluorescence," J. Biomed. Opt. 9, 254-258 (2004). [CrossRef] [PubMed]
  6. B. R. Masters, P. T. So, and E. Gratton, "Multiphoton excitation microscopy of in vivo human skin. Functional and morphological optical biopsy based on three-dimensional imaging, lifetime measurements and fluorescence spectroscopy," Ann. N. Y. Acad. Sci. 838, 58-67 (1998). [CrossRef] [PubMed]
  7. P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Ann. Rev. Biomed. Eng. 2, 399-429 (2000). [CrossRef]
  8. I. Constantinidis, C. L. Stabler, R. Long, and A. Sambanis, "Noninvasive monitoring of a retrievable bioartificial pancreas in vivo," Ann. N. Y. Acad. Sci. 961, 298-301 (2002). [CrossRef] [PubMed]
  9. A. S. P. Lin, T. H. Barrows, S. H. Cartmella, and R. E. Guldberg, "Microarchitectural and mechanical characterization of oriented porous polymer scaffolds," Biomaterials 24, 481-489 (2003). [CrossRef]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  11. B. E. Bouma and G. J. Tearney, editors, Handbook of Optical Coherence Tomography. Marcel Dekker, N.Y. (2001).
  12. J. M. Schmitt, "Optical coherence tomography (OCT): a review," IEEE J. Select. Topics.Quantum Electon. 5, 1205-1215 (1999). [CrossRef]
  13. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  14. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-865 (1998). [CrossRef] [PubMed]
  15. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, and S. Dunne, "Three dimensional OCT images from retina and skin," Opt. Express 7, 292-298 (2000). [CrossRef] [PubMed]
  16. S. A. Boppart, M. E. Brezinski, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, "Investigation of developing embryonic morphology using optical coherence tomography," Dev. Biol. 177, 54-63 (1996). [CrossRef] [PubMed]
  17. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography," Proc. Natl. Acad. Sci. USA 94, 4256-4261 (1997). [CrossRef] [PubMed]
  18. X. Xu, R. K. Wang, and A. El Haj, "Investigation of changes in optical attenuation of bone and neuronal cells in organ culture or three-dimensional constructs in vitro with optical coherence tomography: relevance to cytochrome oxidase monitoring," Eur. Biophys. J. 32, 355-362 (2003). [CrossRef] [PubMed]
  19. C. Mason, J. F. Markusen, M. A. Town, P. Dunnill, and R. K. Wang, "The potential of optical coherence tomography in the engineering of living tissue," Phys. Med. Biol. 49, 1097-1115 (2004). [CrossRef] [PubMed]
  20. H. Michna, "Induced locomotion of human and murine macrophages: a comparative analysis by means of the modified Boyden-chamber system and the agarose migration assay," Cell Tissue Res. 255, 423-429 (1989). [CrossRef] [PubMed]
  21. D. L. Marks, A. L. Oldenburg, J. J. Reynolds, and S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002). [CrossRef]
  22. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Inverse scattering for optical coherence tomography," J. Opt. Soc. Am. A 23, 1027-1037 (2006). [CrossRef]
  23. H. Steller, "Mechanisms and genes of cellular suicide," Science 267, 1445-1449 (1995). [CrossRef] [PubMed]
  24. P. A. DiMilla, J. A. Quinn, S. M. Albelda, and D. A. Lauffenburger, "Measurement of individual cell migration parameters for human tissue cells," Amer. Inst. Chem. Engr. J. 38, 1092-1104 (1992). [CrossRef]
  25. E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, "Taking cell-matrix adhesions to the third dimension," Science 294, 1708-1712 (2001). [CrossRef] [PubMed]
  26. N. L’Heureux, S. Paquet, R. Labbe, L. Germain, and F. A. Auger. "A completely biological tissue-engineered human blood vessel," FASEB J. 12, 47-56 (1998).
  27. H. W. Ouyang, S. L. Toh, J. Goh, T. E. Tay, and K. Moe, "Assembly of bone marrow stromal cell sheets with knitted poly (L-Lactide) scaffold for engineering ligament analogs," J. Biomed. Mat. Res. 75, 264-271 (2005).
  28. W. Tan, A. Sendmir-Urkmez, L. J. Fahrner, R. Jamison, D. Leckband, and S. A. Boppart, "Structural and functional optical imaging of three-dimensional engineered tissue development," Tissue Eng. 10, 1747-1756 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited