OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7172–7187

Separately reconstructing the structural and functional parameters of a fluorescent inclusion embedded in a turbid medium

Baohong Yuan and Quing Zhu  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7172-7187 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a novel imaging technique for fluorescence diffuse optical tomography (FDOT). Unlike conventional FDOT, this technique separates the imaging procedure into two steps to respectively reconstruct the structural information (such as the center position and the radius), and the functional information (such as the fluorophore concentration and/or lifetime) of a fluorescing target embedded in a turbid medium. The structural parameters of the target were estimated from the amplitude ratio and phase difference of fluorescence signals received at different detectors, because the amplitude ratio and phase difference were found independent of, or weakly related to, the functional parameters. Based on the estimated structural parameters, a dual-zone mesh technique was utilized to reconstruct the fluorophore concentration. Results of simulations and phantom experiments showed that the structural parameters could be accurately recovered, without knowing the functional information, and that the reconstruction accuracy of the functional parameter was greater than 80%.

© 2006 Optical Society of America

OCIS Codes
(170.5270) Medical optics and biotechnology : Photon density waves
(170.5280) Medical optics and biotechnology : Photon migration
(260.2510) Physical optics : Fluorescence

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 6, 2006
Revised Manuscript: May 26, 2006
Manuscript Accepted: May 30, 2006
Published: August 7, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Baohong Yuan and Quing Zhu, "Separately reconstructing the structural and functional parameters of a fluorescent inclusion embedded in a turbid medium," Opt. Express 14, 7172-7187 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  2. R. Weissleder and U. Mahmood, "Molecular Imaging," Radiology 219,316-333 (2001). [PubMed]
  3. W. Long and M. Vernon, "Optical molecular imaging: time domain advantages with explore OptixTM," January 2004, Advanced Research Technology Inc. http://www.art.ca/en/products/INOPaper040129.pdf.
  4. J. Skoch, A. Dunn, B. T. Hyman, and B. J. Bacskai, "Development of an optical approach for noninvasive imaging of Alzheimer’s disease pathology," J. Biomed. Opt. 10, 011007-1-7 (2005). [CrossRef]
  5. A. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 3, 34-40 (1995). [CrossRef]
  6. N. Tromberg, R. Shah, A. Lanning, J. Cerussi, T. Espinoza, L. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  7. B. Murphy, Fundamentals of light microscopy and electronic imaging (Wiley-Liss, 2001).
  8. J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging," Photochem. and Photobiol. 77, 420-430 (2003). [CrossRef]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  10. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef]
  11. J. Lee and E. M. Sevick-Muraca, "Three-dimensional fluorescence enhanced optical tomography using referenced frequency domain photon migration measurements at emission and excitation wavelengths," J. Opt. Soc. Am. A 19, 759-771 (2002). [CrossRef]
  12. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography," Proc. Natl. Acad. Sci. USA 99, 9619-9624 (2002). [CrossRef] [PubMed]
  13. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003). [CrossRef] [PubMed]
  14. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26,893-895 (2001). [CrossRef]
  15. M. Gurfinkel, S Ke, X Wen, C Li, and E. M. Sevick-Muraca, "Near-infrared fluorescence optical imaging and tomography," Dis. Markers 19, 107-121 (2003, 2004).
  16. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," J. Photochem. and Photobiol. 66, 55-64 (1997). [CrossRef]
  17. E. Graves, R. Weissleder, and V. Ntziachristos, "Fluorescence molecular imaging of small animal tumor models," Curr. Mol. Med. 4, 419-430 (2004). [CrossRef] [PubMed]
  18. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  19. U. Mahmood, "Near infrared optical applications in molecular imaging, earlier, more accurate assessment of disease presence, disease course, and efficacy of disease treatment," IEEE Eng. Med. Biol. Mag. 23, 58-66 (2004). [CrossRef] [PubMed]
  20. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  21. V. Ntziachristos and R. Weissleder, "Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media," Med. Phys. 29, 803-809 (2002). [CrossRef] [PubMed]
  22. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, J. L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. USA 101, 12294-12299 (2004). [CrossRef] [PubMed]
  23. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23,492-500 (2004). [CrossRef] [PubMed]
  24. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28,1701-1703 (2003). [CrossRef] [PubMed]
  25. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt, Soc. Am. A. 21,1035-1049 (2004). [CrossRef]
  26. D. J. Hawrysz, M. J. Eppstein, J. Lee, and E. M. Sevick-Muraca, "Error consideration in contrast-enhanced three-dimensional optical tomography," Opt. Lett. 26, 704-706 (2001). [CrossRef]
  27. S. Lam, F. Lesage, and X. Intes, "Tim domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  28. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005). [CrossRef] [PubMed]
  29. J. W. Bangerth and E. M. Sevick-Muraca, "Adaptive finite element based tomography for fluorescence optical imaging in tissue," Opt. Express 12,5402-5417 (2004). [CrossRef] [PubMed]
  30. Q. Zhu, M. Huang, N. G. Chen, K. Zarfos, B. Jagjivan, M. Kane, P. Hegde, and S. H. Kurtzman, "Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions," Neoplasia 5, 379-388 (2003). [PubMed]
  31. Q. Zhu, N. G. Chen, and S. Kurtzman, "Imaging tumor angiogenesis using combined near infrared diffusive light and ultrasound," Opt. Lett. 28, 337-339 (2003). [CrossRef] [PubMed]
  32. N. G. Chen, P. Guo, S. Yan, D. Piao, and Q. Zhu, "Simultaneous near infrared diffusive light and ultrasound imaging," Appl. Opt. 40, 6367-6380 (2001). [CrossRef]
  33. X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, "Fluorescent diffuse photon density waves in homogeneous and heterogeneous turbid media: analytic solutions and applications," Appl. Opt. 35, 3746-3758 (1996). [CrossRef] [PubMed]
  34. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAdams, and B. J. Tromberg, "Bondary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 10, 2727-2741 (1994). [CrossRef]
  35. J. C. J. Passchens and G. W. ‘t Hooft, "Influence of boundaries on the imaging of objects in turbid media," J. Opt. Soc. Am. A 15, 1797-1812 (1998). [CrossRef]
  36. X. Li, B. Chance, and A. G. Yodh, "Fluorescent Heterogeneities in turbid media: Limits for detection, characterization and comparison with aAbsorption," Appl. Opt. 37,6833-6844 (1998). [CrossRef]
  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, New York, 1992), Chap. 10.
  38. N. G. Chen, M. M. Huang, H. Xia, D. Piao, and Q. Zhu, ‘‘Portable near-infrared diffusive light imager for breast cancer detection,’’J. Biomed. Opt. 9, 504-510 (2004). [CrossRef] [PubMed]
  39. B. Yuan and Q. Zhu, "Emission and absorption properties of indocyanine green in Intralipid solution," J. Biomed. Opt. 9, 497-503 (2004). [CrossRef] [PubMed]
  40. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited