OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7270–7278

Photon energy lifter

Zeno Gaburro, Mher Ghulinyan, Francesco Riboli, Lorenzo Pavesi, Alessio Recati, and Iacopo Carusotto  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7270-7278 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.

© 2006 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.7020) Optical devices : Traveling-wave devices
(230.7370) Optical devices : Waveguides
(320.7080) Ultrafast optics : Ultrafast devices

ToC Category:
Optical Devices

Original Manuscript: April 18, 2006
Revised Manuscript: July 14, 2006
Manuscript Accepted: July 25, 2006
Published: August 7, 2006

Zeno Gaburro, Mher Ghulinyan, Francesco Riboli, Lorenzo Pavesi, Alessio Recati, and Iacopo Carusotto, "Photon energy lifter," Opt. Express 14, 7270-7278 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 (1996). [CrossRef]
  2. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993). [CrossRef]
  3. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996). [CrossRef]
  4. M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005). [CrossRef]
  5. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  6. M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005). [CrossRef]
  7. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  8. C. Klingshirn, Semiconductor Optics (Springer-Verlag, Heidelberg, 1997).
  9. K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003). [CrossRef] [PubMed]
  10. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005). [CrossRef]
  11. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006). [CrossRef]
  12. H. Gersene T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  13. A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photonics News 14, 44 (2003). [CrossRef]
  14. J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005). [CrossRef]
  15. H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  16. A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003). [CrossRef]
  17. M. Ghulinyan C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724 (2003). [CrossRef]
  18. A. Galindo and P. Pascual, Quantum Mechanics II, (Springer, Berlin, 1991).
  19. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990). [CrossRef]
  20. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  21. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004). [CrossRef]
  22. Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004). [CrossRef]
  23. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006). [CrossRef]
  24. C. R. Pollock, Fundamentals of Optoelectronics, (Irwin, Chicago, 1995).
  25. A. S. Sudbo, "Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides," IEEE Photon. Technol. Lett. 5, 342-344 (1993). [CrossRef]
  26. P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005). [CrossRef]
  27. R. C. Alferness, "Optical guided-wave devices," Science 234, 825-829 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited