OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7291–7298

Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi

Amir Hosseini, Arthur Nieuwoudt, and Yehia Massoud  »View Author Affiliations

Optics Express, Vol. 14, Issue 16, pp. 7291-7298 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present a full-vector finite difference method to solve for optical modes in one and two dimensional subwavelength plasmonic waveguides. We have used the Implicitly Restarted Arnoldi method to directly calculate the propagation constants of the dominant modes. The method has low computational complexity and can be applied to accurately model complex geometries and structures with fast-varying field profiles. When applied to solve for purely bounded modes, our method automatically separates evanescent and low-loss guided modes.

© 2006 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: June 5, 2006
Revised Manuscript: July 20, 2006
Manuscript Accepted: July 20, 2006
Published: August 7, 2006

Amir Hosseini, Arthur Nieuwoudt, and Yehia Massoud, "Efficient simulation of subwavelength plasmonic waveguides using implicitly restarted Arnoldi," Opt. Express 14, 7291-7298 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, "Integrated plasmon and dielectric waveguides," Opt. Express 12, 5481-5486 (2004). [CrossRef] [PubMed]
  2. K. Tanaka, M. Tanaka, and T. Sugiyama, "Simulation of practical nanometric circuits based on surface plasmon polariton gap waveguide," Opt. Express 13, 256-266 (2005). [CrossRef] [PubMed]
  3. G. I. Stegeman, R. F. Wallias, and A. Maradudin, "Excitation of surface polaritons by end-fire coupling," Opt. Lett. 8, 386 (1983). [CrossRef] [PubMed]
  4. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000). [CrossRef]
  5. R. Zia,M. D. Selker, P. B. Catrysse, andM. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  6. S. J. Al-Bader, "Optical transmission on metallic wires-fundamental modes," IEEE J. Quantum Electron 40, 325-329 (2004). [CrossRef]
  7. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric strucutres," J. Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  8. P. Berini, A. Stohr, K. Wu, D. Jager, "Normal mode analysis and characterization of an InGaAs/GaAs MQW field-induced optical waveguide including electrode effects," J. Lightwave Technol. 14, 2422-2435 (1996). [CrossRef]
  9. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguide," Phys. Rev. B 71, 165431 (2005). [CrossRef]
  10. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," Opt. Express 7, 260-272 (2000). [CrossRef] [PubMed]
  11. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model," J. Phys. Rev. B 72, 075405 (2005). [CrossRef]
  12. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, and C. M. Soukoulis, "Metallic photonic crystals at optical wavelength," J. Phys. Rev. B 62, 15299-15302 (2000). [CrossRef]
  13. P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, "Analysis of vectorial mode fields in optical waveguides by new finite difference method," J. Lightwave Technol. 12, 487-494 (1994). [CrossRef]
  14. K. Ramm, P. Lusse, and H.-G. Unger, "Multigrid eigenvalue solver for mode calculation of planar optical waveguides," IEEE Photonics Technol. Lett. 9, 967-969 (1997). [CrossRef]
  15. V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal, "A Survey of Software for Sparse Eigenvalue Problems," Technical report, Universidad Politecnica de Valencia, (2005).
  16. W. J. Stewart and A. Jennings, "Algorithm 570: LOPSI: A Simultaneous Iteration Method for Real Matrices [F2]," ACM Trans. Math. Softw. 7, 230-232 (1981). [CrossRef]
  17. R. B. Lehoucq and D. C. Sorensen, "Deflation techniques within an implicitly restarted iteration," SIAM J. Matrix Anal. Appl. 17, 789-821 (1996). [CrossRef]
  18. D. C. Sorensen, "Implicit application of polynomial filters in a K-step Arnoldi method," SIAM J. Matrix Anal. Appl. 13, 357-385, (1992). [CrossRef]
  19. R. Radke, "A MATLAB implementation of the implicitly restarted Arnoldi method for solving large scale eigenvalue problems," Technical report, Dept. of Applied and Computational Mathematics, Rice University, Houston, TX, (1996).
  20. R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited