OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 16 — Aug. 7, 2006
  • pp: 7362–7367

Observation of lower to higher bandgap transition of one-dimensional defect modes

Xiaosheng Wang, Jack Young, Zhigang Chen, Doug Weinstein, and Jianke Yang  »View Author Affiliations


Optics Express, Vol. 14, Issue 16, pp. 7362-7367 (2006)
http://dx.doi.org/10.1364/OE.14.007362


View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate one-dimensional optically-induced photonic lattices with a negative defect and observe linear bandgap guidance in such a defect. We show that a defect mode moves from the first bandgap to a higher bandgap as the lattice potential is increased. Our experimental results are in good agreement with the theoretical analysis of these effects.

© 2006 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(230.4000) Optical devices : Microstructure fabrication
(350.4990) Other areas of optics : Particles

ToC Category:
Photonic Crystals

History
Original Manuscript: June 13, 2006
Revised Manuscript: July 21, 2006
Manuscript Accepted: July 22, 2006
Published: August 7, 2006

Citation
Xiaosheng Wang, Jack Young, Zhigang Chen, Doug Weinstein, and Jianke Yang, "Observation of lower to higher bandgap transition of one-dimensional defect modes," Opt. Express 14, 7362-7367 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, NJ, 1995).
  2. P. Russell, "Photonic crystal fibers," Science 299, 358 (2003). [CrossRef] [PubMed]
  3. S. L. McCall, P. M. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, "Microwave propagation in two-dimensional dielectric lattices," Phys. Rev. Lett. 67, 2017 (1991). [CrossRef] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369 (2004). [CrossRef] [PubMed]
  5. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309 (2005). [CrossRef] [PubMed]
  6. J. Schmidtke, W. Stille, and H. Finkelmann, "Defect mode emission of a dye doped cholesteric polymer network," Phys. Rev. Lett. 90, 083902 (2003). [CrossRef] [PubMed]
  7. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657 (2004). [CrossRef]
  8. D. Mandelik, H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, "Band structure of waveguide arrays and excitation of Floquet-Bloch solitons," Phys. Rev. Lett. 90, 53902 (2003). [CrossRef]
  9. N. K. Efremidis, J. Hudock, D. N. Christodoulides, J. W. Fleischer, O. Cohen, and M. Segev, "Two-dimensional optical lattice solitons," Phys. Rev. Lett. 91, 213906 (2003). [CrossRef] [PubMed]
  10. A. A. Sukhorukov, D. Neshev, W. Krolikowski, and Y. S. Kivshar, "Nonlinear Bloch-wave interaction and Bragg scattering in optically induced lattices," Phys. Rev. Lett. 92, 093901 (2004). [CrossRef] [PubMed]
  11. U. Peschel, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, and Y. Silberberg, "Nonlinearly induced escape from a defect state in waveguide arrays," Appl. Phys. Lett. 75, 1348 (1999). [CrossRef]
  12. R. Morandotti, H. S. Eisenberg, D. Mandelik, Y. Silberberg, D. Modotto, M. Sorel, C. R. Stanley, and J. S. Aitchison, "Interactions of discrete solitons with structural defects," Opt. Lett. 28, 834 (2003). [CrossRef] [PubMed]
  13. F. Fedele, J. Yang, and Z. Chen, "Defect modes in 1D photonic lattices," Opt. Lett. 30, 1506 (2005). [CrossRef] [PubMed]
  14. F. Fedele, J. Yang, and Z. Chen, "Properties of defect modes in one-dimensional optically-induced photonic lattices," Stud. Appl. Math.,  115279 (2005). [CrossRef]
  15. D. Christodoulides and R. Joseph, "Discrete self-focusing in nonlinear arrays of coupled waveguides,"Opt. Lett. 13, 794 (1988). [CrossRef] [PubMed]
  16. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature (London) 422, 147 (2003). [CrossRef]
  17. D. Neshev, E. Ostrovskaya, Y. Kivshar, and W. Krolikowski, "Spatial solitons in optically induced gratings," Opt. Lett. 28, 710 (2003). [CrossRef] [PubMed]
  18. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, "Discrete solitons and soliton-induced dislocations in partially-coherent photonic lattices," Phys. Rev. Lett. 92, 123902 (2004). [CrossRef] [PubMed]
  19. Z. Chen and K. McCarthy, "Spatial soliton pixles from partially coherent light," Opt. Lett. 27, 2019 (2002). [CrossRef]
  20. X. Wang, Z. Chen, and J. Yang, "Guiding light in optically-induced ring lattices with a low refractive index core," Opt. Lett. 31, 1887 (2006). [CrossRef] [PubMed]
  21. I. Makasyuk, Z. Chen, and J. Yang, "Band-gap guidance in optically induced photonic lattices with a negative defect," Phys. Rev. Lett.,  96, 223903 (2006). [CrossRef]
  22. . P. Yeh, and A. Yariv, "Bragg reflection waveguides," Opt. Commun. 19, 427 (1976). [CrossRef]
  23. Y. Cho, A. Yariv, and P. Yeh, "Observation of confined propagation in Bragg waveguides," Appl. Phys. Lett. 30, 471 (1977). [CrossRef]
  24. H. Trompeter, U. Peschel, T. Pertsch, F. Lederer, U. Streppel, D. Michaelis, and A. Bräuer, "Tailoring guided modes in waveguide arrays," Opt. Express 11, 3404 (2003). [CrossRef]
  25. L. Morales-Molina and R. A. Vicencio, "Trapping of discrete solitons by defects in nonlinear waveguide arrays," Opt. Lett.,  31, 966 (2006). [CrossRef]
  26. M. J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, "Solitons in two-dimensional lattices possessing defects, dislocations and quasicrystal structures. Phys. Rev. E

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited