OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7642–7660

Assessment of a fluorescence-enhanced optical imaging system using the Hotelling observer

Amit K. Sahu, Amit Joshi, Matthew A. Kupinski, and Eva M. Sevick-Muraca  »View Author Affiliations


Optics Express, Vol. 14, Issue 17, pp. 7642-7660 (2006)
http://dx.doi.org/10.1364/OE.14.007642


View Full Text Article

Enhanced HTML    Acrobat PDF (356 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study represents a first attempt to assess the detection capability of a fluorescence-enhanced optical imaging system as quantified by the Hotelling observer. The imaging system is simulated by the diffusion approximation of the time-dependent radiative transfer equation, which describes near infra-red (NIR) light propagation through a breast phantom of clinically relevant volume. Random structures in the background are introduced using a lumpy-object model as a representation of anatomical structure as well as non-uniform distribution of disease markers. The systematic errors and noise associated with the actual experimental conditions are incorporated into the simulated boundary measurements to acquire imaging data sets. A large number of imaging data sets is considered in order to perform Hotelling observer studies. We find that the signal-to-noise ratio (SNR) of Hotelling observer (i) decreases as the strength of lumpy perturbations in the background increases, (ii) decreases as the target depth increases, and (iii) increases as excitation light leakage decreases, and reaches a maximum for filter optical density values of 5 or higher.

© 2006 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(110.3000) Imaging systems : Image quality assessment
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration

ToC Category:
Imaging Systems

History
Original Manuscript: June 9, 2006
Revised Manuscript: August 10, 2006
Manuscript Accepted: August 14, 2006
Published: August 21, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Amit K. Sahu, Amit Joshi, Matthew A. Kupinski, and Eva M. Sevick-Muraca, "Assessment of a fluorescence-enhanced optical imaging system using the Hotelling observer," Opt. Express 14, 7642-7660 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7642


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005). [CrossRef] [PubMed]
  2. A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005). [CrossRef] [PubMed]
  3. J. P. Rolland, and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  4. C. K. Abbey, and H. H. Barrett, "Human- and model- observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001). [CrossRef]
  5. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002). [CrossRef] [PubMed]
  6. A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004). [CrossRef] [PubMed]
  7. A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000). [CrossRef]
  8. A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462. [CrossRef] [PubMed]
  9. H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999). [CrossRef]
  10. C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004). [CrossRef] [PubMed]
  11. S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998). [CrossRef]
  12. M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002). [CrossRef]
  13. R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005). [CrossRef]
  14. L. Chen, and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005). [CrossRef]
  15. K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005). [CrossRef]
  16. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995). [CrossRef] [PubMed]
  17. E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, "Near infrared fluorescence imaging and spectroscopy in random media and tissues," Chapter 33 in Biomedical Photonics Handbook, CRC Press, ed. J. Vo-Dinh, (2003).
  18. A. R. P. Fortin, "Detection-theoretic evaluation in digital radiography and optical tomography," PhD Thesis, The University of Arizona, Tucson, AZ, 2002.
  19. M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003). [CrossRef]
  20. S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005). [CrossRef]
  21. K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).
  22. K. Hwang, and E. M. Sevick-Muraca, "Influence of excitation light rejection on forward model mismatch," Med. Phys. (in preparation.).
  23. Referring to the corpuscular nature of light.
  24. H. Lohinger, Teach/Me Data Analysis (Springer-Verlag, Berlin-New York-Tokyo, 1999).
  25. H. H. Barrett, and K. J. Myers, Foundations of Image Science (John Wiley & Sons, Inc., New Jersey, 2004).
  26. Arising from the instrumentation of the system.
  27. B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994). [CrossRef]
  28. E. J. Ientilucci, "Synthetic simulation and modeling of image intensified CCDs (IICCD)," PhD Thesis, Rochester Institute of Technology, Rochester, NY, 2000.
  29. In this context, the word "signal" means "the object being measured", unlike "the object being detected" in the target detection tasks.
  30. J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003). [PubMed]
  31. H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990). [CrossRef] [PubMed]
  32. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001). [CrossRef] [PubMed]
  33. W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994). [CrossRef]
  34. I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996). [CrossRef]
  35. R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000). [PubMed]
  36. B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997). [CrossRef]
  37. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995). [CrossRef]
  38. H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998). [CrossRef]
  39. J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000). [CrossRef]
  40. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993). [CrossRef] [PubMed]
  41. H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (740 KB)     
» Media 2: MPG (802 KB)     
» Media 3: MPG (758 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited