OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7709–7722

Optical impedance of metallic nano-structures

M. Mazilu and K. Dholakia  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 7709-7722 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Impedance matching refers to the suppression of reflected radiation from an interface and is a concept that applies right across the electromagnetic spectrum. In particular it has come to prominence in relation to the propagation of light in metallic structures and associated meta-materials. Whilst established for microwaves and electrical circuits, this concept has only very recently been observed in the optical domain, yet is not well defined or understood. We present a framework to elucidate the concept of optical impedance. We describe using a scattering matrix approach the characteristic, iterative, image and wave impedances of an optical system. With a numerical model, we explore each form of impedance matching in metal-dielectric structures. Thin gold layers may extend the concept of Brewster’s angle to normal incidence and s polarization. Optical impedance for recently realized metallic gold nano-pillars which has shown negative permeability is also explored and we show that current measurements are inconclusive to robustly state its characteristic impedance is matched to the vacuum.

© 2006 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(260.3910) Physical optics : Metal optics

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: July 12, 2006
Revised Manuscript: August 8, 2006
Manuscript Accepted: August 8, 2006
Published: August 21, 2006

M. Mazilu and K. Dholakia, "Optical impedance of metallic nano-structures," Opt. Express 14, 7709-7722 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  3. V. G. Veselago, "Electrodynamics of substances with simultaneously negative values of sigma and mu," Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  4. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  6. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438, 335-338 (2005). [CrossRef] [PubMed]
  7. .P. Lorrain and D. R. Corson, Electromagnetic fields and waves, (W. H. Freeman, 1970) Chap. 13.
  8. R. Yorke, Electric circuit theory (Pergamon Press, 1986) Chap. 8.
  9. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  10. R. Biswas, Z. Y. Li and K. M. Ho, "Impedance of photonic crystals and photonic crystal waveguides," Appl. Phys. Lett. 84, 1254-1256 (2004). [CrossRef]
  11. D. R. Smith, S. Schultz, P. Markos and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  12. X. Chen, T. M. Grzegorczyk, B. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004). [CrossRef]
  13. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777 (2006). [CrossRef] [PubMed]
  14. J. B. Pendry, D. Schuring and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780 (2006). [CrossRef] [PubMed]
  15. R. J. Potton, "Reciprocity in optics," Rep. Prog. Phys. 67, 717-754 (2004). [CrossRef]
  16. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114,185-200 (1994). [CrossRef]
  17. P. B. Johnson, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  18. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander and C. A. Ward, "Optical-properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983). [CrossRef] [PubMed]
  19. I. H. Malitson, "Interspecimen comparison of the refractive index of fused silica," J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  20. M. Mazilu, V. Donchev and A. Miller, "A modular method for the calculation of transmission and reflection in multilayered structures," Appl. Opt. 40, 6670-6676 (2001). [CrossRef]
  21. R. Biswas, Z. Y. Li, and K. M. Ho, "Impedance of photonic crystals and photonic crystal waveguides," Appl. Phys. Lett. 84, 1254-1256 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited