OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7757–7775

Cubic optical elements for an accommodative intraocular lens

Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach  »View Author Affiliations


Optics Express, Vol. 14, Issue 17, pp. 7757-7775 (2006)
http://dx.doi.org/10.1364/OE.14.007757


View Full Text Article

Enhanced HTML    Acrobat PDF (2050 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new accommodative intraocular lens based on a two-element varifocal Alvarez lens. The intraocular lens consists of (1) an anterior element combining a spherical lens for refractive power with a cubic surface for the varifocal effect, and (2) a posterior element with a cubic surface only. The focal length of the IOL lens changes when the superimposed refractive elements shift in opposite directions in a plane perpendicular to the optical axis. The ciliary muscle will drive the accommodation by a natural process of contraction and relaxation. Results of ray-tracing simulations of the model eye with the two-element intraocular lens are presented for on-axis and off-axis vision. The configuration of the lens is optimized to reduce refractive errors as well as effects of misalignment. A prototype with a clear aperture of ~5.7 mm is manufactured and evaluated in air with a Shack-Hartmann wave-front sensor. It provides an accommodation range of ~4 dioptres in the eye at a ~0.75-mm lateral displacement of the optical elements. The experimentally measured on-axis optical performance of the IOL lens agrees with the theoretically predicted performance.

© 2006 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.3620) Optical design and fabrication : Lens system design
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 14, 2006
Revised Manuscript: July 28, 2006
Manuscript Accepted: August 1, 2006
Published: August 21, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Aleksey N. Simonov, Gleb Vdovin, and Michiel C. Rombach, "Cubic optical elements for an accommodative intraocular lens," Opt. Express 14, 7757-7775 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F.  Koretz, P. L.  Kaufman, M. W.  Neider, P. A.  Goeckner, "Accommodation and presbyopia in the human eye. 1: Evaluation of in vivo measurement techniques," Appl. Opt. 28, 1097-1102 (1989). [CrossRef] [PubMed]
  2. J. F.  Koretz, G. H.  Handelman, "Modeling age-related accommodation loss in the human eye," Mathem. modeling 7, 1003-1014 (1986). [CrossRef]
  3. S.  Masket, "Accommodating IOLs: emerging concepts and design," Cataract and Refract. Surg. Today, 32-36 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_F1_Masket.pdf
  4. W.  Freeman, "The Worldwide IOL Market. MarketScope multiclient study," (MarketScope Inc, Manchester, MO 63021, 2005), p. 246, http://www.market-scope.com
  5. A.  Rana, D.  Miller, P.  Magnante, "Understanding the accommodating intraocular lens," J. Cataract. Refract. Surg. 29, 2284-2287 (2003). [CrossRef]
  6. S. D.  McLeod, V.  Portney, A.  Ting, "A dual optic accommodating foldable intraocular lens," Br. J. Ophthalmol. 87, 1083-1085 (2005). [CrossRef]
  7. H.  von Helmholtz, Physiological optics, (Dover, New York, 1962) vol. 1.
  8. D.  Miller, "Accommodation in nature and principles for an accommodating intraocular lens," Ann. Ophthalmol. 17, 540-541 (1985). [PubMed]
  9. R.F.  Fisher "The ciliary body in accommodation," Trans. Ophthalmol. Soc. U. K. 105, 208-219 (1986). [PubMed]
  10. W.  Drexler, O.  Findl, R.  Menapace, G.  Rainer, C.  Vass, C.K.  Hitzenberger, and A.F.  Fercher, "Partial coherence interferometry: a novel approach to biometry in cataract surgery," Am. J. Ophthalmol. 126, 524-534 (1998). [CrossRef] [PubMed]
  11. J. E.  Wold, A.  Hu, S.  Chen, A.  Glasser, "Subjective and objective measurement of human accommodative amplitude," J. Cataract. Refract. Surg. 29, 1878-1888 (2003). [CrossRef] [PubMed]
  12. H.  Lesiewska-Junk, J.  Kaluzny, "Intraocular lens movement and accommodation in eyes of young patients," J. Cataract. Refract. Surg. 26, 562-565 (2000). [CrossRef] [PubMed]
  13. T.  Oshika, T.  Mimura, S.  Tanaka, Sh.  Amano, M.  Fukuyama, F.  Yoshitomi, N.  Maeda, T.  Fujikado, Y.  Hirohara, T.  Mihashi, "Apperent accommodation and corneal wavefront aberration in pseudophakic eyes," Investig. Ophthalmol. and Vis. Science 43, 2882-2886 (2002).Q1
  14. H.B.  Dick, "Accommodative intraocular lenses: current status," Curr. Opin. Ophthalmol. 16, 8-26, (2005). [CrossRef] [PubMed]
  15. R.  Bellucci, P.  Giardini, "Pseudoaccommodation with the 3M diffractive mulifocal intraocular lens: a refraction study of 52 subjects," J. Cataract. Refract. Surg. 19, 32-35 (1993). [PubMed]
  16. P. J.  Gray, M. G.  Lyall, "Diffractive mulifocal intraocular lens implants for unilateral cataracts in presbyopic patents," Br. J. Ophthalmol. 76, 336-337 (1992). [CrossRef] [PubMed]
  17. S. P. B.  Percival, S. S.  Setty, "Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens," J. Cataract. Refract. Surg. 19, 26-31 (1993). [PubMed]
  18. D. J.  Coleman, "On the hydraulic suspension theory of accommodation," Trans. Am. Ophthalmol. Soc. 84, 846-868 (1986). [PubMed]
  19. J. S.  Cumming, "Accommodating intraocular lens," U.S. patent 6,200,342 (March 13, 2001).
  20. M.  Kuchle, N. X.  Nguyen, A.  Langenbucher, G. C.  Gusek-Schneider, B.  Seitz, K. D.  Hanna, "Implantation of a new accommodative posterior chamber intraocular lens," J. Refract. Surg. 18, 208-216 (2002). [PubMed]
  21. O.  Stachs, H. Schneider, R. Beck, R. Guthoff, "Pharmacological induced haptic changes and the accommodative performance in patients with the AT-45 accommodative IOL," J. Refract. Surg. 22, 145-150 (2006). [PubMed]
  22. O.  Stachs, H.  Schneider, J.  Stave, R.  Guthoff, "Potentially accommodating intraocular lenses—an in vitro and in vivo study using three-dimensional high-frequency ultrasound," J. Refract. Surg. 21, 37-45 (2005). [PubMed]
  23. T.  Neuhann, "Four year European data on the Crystalens," Cataract and Refract. Surg. Today, 58 (July, 2004), http://www.crstoday.com/PDF%20Articles/0704/crst0704_f6_neuhann.pdf
  24. J. S.  Cumming, S. G.  Slade, A.  Chayet, "Clinical evaluation of the model AT-45 silicone accommodating intraocular lens: results of feasibility and the initial phase of Food and Drug administration clinical trials," Ophthalmol. 108, 2005-2010 (2001).Q2 [CrossRef]
  25. M.  Packer, "The AT-45 Crystalens Accommodating Intraocular Lens," in: C. Y. Khoo, ed., Javal Lectureship - Fresh ideas about corneal shape and structure, presented at XXIX International Congress of Ophthalmology, Sydney, Australia, 21-25 April 2002.
  26. O.  Nishi, Y.  Nakai, Y.  Yamada, Y.  Mizumoto, "Amplitudes of accommodation of primate lenses refilled with two types of inflatable endocapsular balloons," Arch. Ophthalmol. 111, 1677-1684 (1993). [CrossRef] [PubMed]
  27. T.  Terwee, "Wiederherstellung der Akkomodationsfähigkeit durch Injektion künstlicher Linsenmateralien in den Kapselsack [Restoration of the accommodative function by injection of artificial lens material in the capsular bag]," presented at 20 Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation und refraktive Chirurgie, Heidelberg, Germany, 3-4 March 2006.
  28. G.-Y.  Yoon, D.R.  Williams, "Visual performance after correcting the monochromatic and chromatic aberrations of the eye," J. Opt. Soc. Am. A 19, 266-275 (2002). [CrossRef]
  29. EN/ISO 11979-2: Ophthalmic implants - Intraocular lenses- Part 2: Optical properties and test methods, Geneva, International Organization for Standardization, 1999.
  30. M. C.  Rombach, "Two optical elements which, in combination, form a lens of variable optical power for application as an intraocular lens," Patent 1,025,622 (WO2005084587, October 7, 2005).
  31. A. N.  Simonov, M.  Rombach, G.  Vdovin, M.  Loktev, "Varifocal optics for a novel accommodative intraocular lens," in MEMS/MOEMS components and their applications III, S. S. Oliver, S. A. Tadigadapa, A. K. Henning, eds., Proc. SPIE 6113, 74-80 (2006).
  32. L. W.  Alvarez, "Two-element variable-power spherical lens," U.S. patent 3,305,294 (February 21, 1967).
  33. Akkolens International B.V., Overaseweg 9, 4836 BA Breda, The Netherlands, http://www.akkolens.com
  34. R. E.  Hopkins, "Visual optics," in Optical DesignMIL-HDBK-141, (Standardization Division, U.S. Defense Supply Agency, Washington, D.C., 1962), pp. 4.1-4.19.
  35. H.-L.  Liou, N. A.  Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  36. O.  Pomerantzeff, H.  Fish, J.  Govignon, and C.L.  Schepens, "Wide angle optical model of the human eye", Ann Ophthalmol. 3, 815-819 (1971). [PubMed]
  37. O.  Pomerantzeff, P.  Dufault, and R.  Goldstein, "Wide-angle optical model of the eye," in Advances in Diagnostic Visual Optics, G.M. Breinin and I.M. Siegel, eds. (Springer-Verlag, Berlin, 1983).
  38. R.  Navarro, J.  Santamaria, J.  Bescos, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  39. D.  Malacara and M.  Malacara, Handbook of optical design (Marcel Dekker, Inc., New York, 2004).
  40. Y. Le Grand and S.G El Hage, Physiological optics (Springer-Verlag, Berlin, 1980).
  41. A.C.  Kooijman, "Light distribution on the retina of a wide-angle theoretical eye," J. Opt. Soc. Am. 73, 1544-1550 (1983). [CrossRef] [PubMed]
  42. L.N.  Thibos, "Formation and sampling of the retinal image," in Seeing: Handbook of perception and cognition, K.K. DeValois, ed. (Academic Press, London, 2000), pp. 1-56.
  43. O.  Pomerantzeff, M.  Pankratov, G. J.  Wang, and P. Dufault, "Wide-angle optical model of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984). [CrossRef] [PubMed]
  44. L. N.  Thibos, A.  Bradley, "Modeling the refractive and neuro-sensor system of the eye," in Visual instrumentation: Optical design and engineering principles, P. Mouroulis, ed. (Mcgraw-Hill, Inc., New York, 1999), pp.101-159.
  45. A. G.  Bennett and R. B.  Rabbetts, "Clinical visual optics," 2nd ed., (Butterworth-Heinemann, Oxford, 1989).
  46. L. N.  Thibos, R. A.  Applegate, J. T.  Schwiegerling, R.  Webb, and VSIA Standards Taskforce Members, "Standards for Reporting the Optical Aberrations of Eyes," OSA Trends in Optics and Photonics 35, Vision Science and its Applications, V. Lakshminarayanan, ed., (Optical Society of America, Washington, DC, 2000), pp. 232-244.
  47. J. M.  Enoch, V.  Lakshminarayanan, "Retinal fiber optics," in Vision optics and instrumentation, W. N. Charman, ed., (MacMillan press, London, U.K., 1991), pp. 280-308.
  48. P.  Artal and R.  Navarro, "Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytic expression," J. Opt. Soc. Am. A 11, 246-249 (1994). [CrossRef]
  49. R.  Navarro, P.  Artal and D. R.  Williams, "Modulation transfer of the human eye as a function of retinal eccentricity," J. Opt. Soc. Am. A 10, 201-212 (1993). [CrossRef] [PubMed]
  50. Oko Technologies/Flexible Optical, Röntgenweg 1, 2624 BD Delft, The Netherlands, http://www.okotech.com
  51. R.  Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  52. S.  Barbero, S.  Marcos, I.  Jimenez-Alfaro, "Optical aberrations of intraocular lenses measured in vivo and in vitro," J. Opt. Soc. Am. A 20, 1841-1851 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited