OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7776–7788

Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms

Karthik Vishwanath, Wei Zhong, Melanie Close, and Mary-Ann Mycek  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 7776-7788 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tissue-simulating phantoms are widely used for controlled studies of photon transport in turbid media. Here, we describe how polystyrene microspheres, which are often used to simulate optical scattering in such phantoms, can reduce fluorophore quantum yield via collisional quenching. We report studies on UV-visible (fluorescein-based) and NIR (IR125-based) phantoms with differing fluorophore and scatterer concentrations, as well as differing microsphere sizes. Results consistent with the Stern-Volmer relation suggest that the fluorophore intrinsic excited-state lifetime decreased due to collisional quenching from polystyrene microspheres and that the quenching efficiency was dependent on the concentration ratio of fluorophores to microspheres. Lifetime decreases ranging from 10–35% (20%) were measured for fluorescein-based (IR 125-based) phantoms. Since polystyrene microspheres are commonly used in tissue-simulating phantoms for quantitative studies of fluorescence light propagation, their quenching effects on fluorescence intensities may be difficult to separate from intensity losses attributed to optical absorption and scattering in the phantom unless fluorescence lifetime measurements are performed simultaneously.

© 2006 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 9, 2006
Revised Manuscript: July 28, 2006
Manuscript Accepted: August 1, 2006
Published: August 21, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Karthik Vishwanath, Wei Zhong, Melanie Close, and Mary-Ann Mycek, "Fluorescence quenching by polystyrene microspheres in UV-visible and NIR tissue-simulating phantoms," Opt. Express 14, 7776-7788 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Mould, ed. Medical Science Series (IOP Publishing Ltd, London, 1988).
  2. D. J. Dowsett, P. A. Kenny, and R. E. Johnston, The physics of Diagnostic imaging (Chapman & Hall, London, 1998).
  3. D. F. Jackson, ed. Progress in medical and environmental physics (Surrey University Press, London, 1982).
  4. J. V. Hajnal, and G. M. Bydder, "Registration and subtraction of serial magnetic resonance images Part 1: Technique," in Advanced MR imaging techniques, W. G. J. Bradley, and G. M. Bydder, eds. (Martin Dunitz Ltd, London, 1997), pp. 221-237.
  5. J. C. Hebden, D. J. Hall, M. Firbank, and D. T. Delpy, "Time-resolved optical imaging of a solid tissue-equivalent phantom," Appl. Opt. 34, 8038-8047 (1995). [CrossRef] [PubMed]
  6. K. Rinzema, L. H. P. Murrer, and W. M. Star, "Direct experimental verification of light transport theory in an optical phantom," J. Opt. Soc. Am. A 15, 2078-2088 (1998). [CrossRef]
  7. A. Sefkow, M. Bree, and M.-A. Mycek, "A method for measuring cellular optical absorption and scattering evaluated using dilute cell suspension phantoms," Appl. Spectrosc. 55, 1495-1501 (2001). [CrossRef]
  8. A. J. Durkin, S. Jaikumar, and R. Richards-Kortum, "Optically dilute, absorbing, and turbid phantoms for fluorescence spectroscopy of homogeneous and inhomogeneous samples," Appl. Spectrosc. 47, 2114-2121 (1993). [CrossRef]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  10. K. Vishwanath, B. W. Pogue, and M.-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods," Phys. Med. Biol. 47, 3387-3405 (2002). [CrossRef] [PubMed]
  11. H. Jiang, S. Ramesh, and M. Bartlett, "Combined Optical and Fluorescence Imaging for Breast Cancer Detection and Diagnosis," Crit. Rev. Biomed. Eng. 28, 371-375 (2000). [PubMed]
  12. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. Hutchinson, L, "Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques," Photochem. Photobiol. 66, 55-64 (1997). [CrossRef] [PubMed]
  13. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, "Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design," Opt. Lett. 28, 120-122 (2003). [CrossRef] [PubMed]
  14. A. Thompson, and E. M. Sevick-Muraca, "Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy," J. Biomed. Opt. 8, 111-120 (2003). [CrossRef] [PubMed]
  15. A. E. Cerussi, J. S. Maier, S. Fantini, M. A. Franceschini, W. W. Mantulin, and E. Gratton, "Experimental verification of a theory for the time-resolved fluorescence spectroscopy of thick tissues," Appl. Opt. 36, 116-124 (1997). [CrossRef] [PubMed]
  16. S. Flock, B. Wilson, and M. Patterson, "Monte Carlo modeling of light propagation in highly scattering tissues-II: Comparsion with measurements in phantoms," IEEE Transactions on Biomedical Engineering 36, 1169-1173 (1989). [CrossRef] [PubMed]
  17. J. R. Mourant, T. Fuselier, J. Boyer, T. Johnson, and I. Bigio, "Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms," Appl. Opt. 36, 949-957 (1997). [CrossRef] [PubMed]
  18. B. B. Das, L. Feng, and R. R. Alfano, "Time-resolved fluorescence and photon migration studies in biomedical and model random media," Rep. Prog. Phys. 60, 227-292 (1997). [CrossRef]
  19. A. Kienle, and M. S. Patterson, "Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source," Phys. Med. Biol. 42, 1801-1819 (1997). [CrossRef] [PubMed]
  20. M. Patterson, B. Chance, and B. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  21. E. M. Sevick-Muraca, J. S. Reynolds, T. L. Troy, G. Lopez, and D. Y. Paithankar, "Fluorescence lifetime spectroscopic imaging with measurements of photon migration," in Advances in Optical Biopsy and Optical Mammography, (1998), pp. 46-57.
  22. R. K. Wang, and Y. A. Wickramasinghe, "Fast algorithm to determine optical properties of a turbid medium from time-resolved measurements," Appl. Opt. 37, 7342-7351 (1998). [CrossRef]
  23. S. A. Ramakrishna, and K. D. Rao, "Estimation of light transport parameters in biological media using coherent backscattering," Pramana, J. Phys. 54, 255-267 (2000). [CrossRef]
  24. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, "Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model," Appl. Opt. 41, 4024-4035 (2002). [CrossRef] [PubMed]
  25. N. Ramanujam, "Fluorescence spectroscopy of neoplastic and non-neoplastic tissues," Neoplasia 2, 89-117 (2000). [CrossRef] [PubMed]
  26. S. J. Madsen, M. S. Patterson, and B. C. Wilson, "The use of India ink as an optical absorber in tissue-stimulating phantoms," Phys. Med. Biol. 37, 985-993 (1992). [CrossRef] [PubMed]
  27. S. Flock, S. L. Jacques, B. C. Wilson, W. Star, and M. Van Gemert, "Optical properties of Intralipid: A phantom medium for light propagation studies," Lasers in Surgery and Medicine 12, 510-519 (1992). [CrossRef] [PubMed]
  28. C. L. Hutchinson, T. L. Troy, and E. M. Sevickmuraca, "Fluorescence-lifetime determination in tissues or other scattering media from measurement of excitation and emission kinetics," Appl. Opt. 35, 2325-2332 (1996). [CrossRef] [PubMed]
  29. T. Farrell, M. Patterson, and M. Essenpreis, "Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry," Appl. Opt. 37, 1958-1972 (1998). [CrossRef]
  30. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, "Measuring absorption coefficients in small volumes of highly scattering media: source detector separations for which path lengths do not depend on scattering properties," Appl. Phys. 36, 5655 - 5661 (1997).Q1
  31. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevickmuraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  32. M. S. Patterson, and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues." Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  33. L. Wang, D. Liu, N. He, S. L. Jacques, and S. L. Thomsen, "Biological laser action." Appl. Opt. 35,1775-1779 (1996). [CrossRef] [PubMed]
  34. E. M. Sevick-Muraca, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, "Near-infrared imaging with fluorescent contrast agents," in Handbook of Biomedical Fluorescence, M.-A. Mycek, and B. W. Pogue, eds. (Marcel-Dekker Inc., New York, New York, 2003), pp. 445-527.
  35. G. Wagnieres, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J.-P. Ballini, and H. Van Den Bergh, "An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy," Phys. Med. Biol. 42, 1415-1426 (1997). [CrossRef] [PubMed]
  36. K. Vishwanath, and M.-A. Mycek, "Time-resolved photon migration in bi-layered tissue models," Optics Express 13,7466-7482 (2005). [CrossRef] [PubMed]
  37. K. Vishwanath, and M.-A. Mycek, "Polystyrene microspheres in tissue-simulating phantoms can collisionally quench fluorescence," J. Fluorescence 13, 105-108 (2003).Q2 [CrossRef]
  38. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  39. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999). [CrossRef] [PubMed]
  40. N. Ramanujam, G. Vishnoi, A. Hielscher, M. Rode, I. Forouzan, and B. Chance, "Photon migration through fetal head in utero using continuous wave, near infrared spectroscopy: clinical and experimental model studies," J. Biomed. Opt. 5, 173-184 (2000). [CrossRef] [PubMed]
  41. J. D. Pitts, and M.-A. Mycek, "Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution," Review of Scientific Instruments 72, 3061-3072 (2001). [CrossRef]
  42. H. C. Van De Hulst, Light Scattering by Small Particles (Wiley and Sons, New York, 1957).
  43. W.-F. Cheong, S. Prahl, and S. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  44. Z. S. Kolber, and M. D. Barkley, "Comparison of approaches to the instrument response function in fluorescence decay measurements," Anal. Biochem. 152, 6-21 (1986). [CrossRef] [PubMed]
  45. K. R. Diamond, T. J. Farrell, and M. S. Patterson, "Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence," Phys. Med. Biol. 48, 4135-4149 (2003). [CrossRef]
  46. D. Stasic, T. J. Farrell, and M. S. Patterson, "The use of spatially resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions," Phys. Med. Biol. 48, 3459-3474 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited