OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7852–7871

Temperature-modulated bioluminescence tomography

Ge Wang, Haiou Shen, Wenxiang Cong, Shan Zhao, and Guo Wei Wei  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 7852-7871 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (4146 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It was recently reported that bioluminescent spectra can be significantly affected by temperature, which we recognize as a major opportunity to overcome the inherent illposedness of bioluminescence tomography (BLT). In this paper, we propose temperature-modulated bioluminescence tomography (TBT) to utilize the temperature dependence of bioluminescence for superior BLT performance. Specifically, we employ a focused ultrasound array to heat small volumes of interest (VOI) one at a time, and induce a detectable change in the optical signal on the body surface of a mouse. Based on this type of information, the BLT reconstruction can be stabilized and improved. Our numerical experiments clearly demonstrate the merits of our TBT with either noise-free or noisy datasets. Also, this idea is applicable in 2D bioluminescence imaging and computational optical biopsy (COB). We believe that our approach and technology represents a major step forward in the field of BLT, and has an important and immediate applicability in bioluminescence imaging of small animals in general.

© 2006 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7170) Medical optics and biotechnology : Ultrasound

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 11, 2006
Revised Manuscript: July 25, 2006
Manuscript Accepted: July 31, 2006
Published: August 21, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Ge Wang, Haiou Shen, Wenxiang Cong, Shan Zhao, and Guo Wei Wei, "Temperature-modulated bioluminescence tomography," Opt. Express 14, 7852-7871 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Zerhouni, "Medicine. The NIH Roadmap," Science 302(5642), 63-72 (2003). [CrossRef] [PubMed]
  2. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003). [CrossRef] [PubMed]
  3. F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005). [CrossRef] [PubMed]
  4. M. Thakur and B. Lentle, "Report of a summit on molecular imaging," AJR Am. J. Roentgenol 186, 297-9. [PubMed]
  5. V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef] [PubMed]
  6. G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).
  7. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004). [CrossRef] [PubMed]
  8. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005). [CrossRef] [PubMed]
  9. M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004). [CrossRef]
  10. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004). [CrossRef]
  11. W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006). [CrossRef] [PubMed]
  12. W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006). [CrossRef] [PubMed]
  13. A. Cong and G. Wang, "Multi-spectral bioluminescence tomography: Methodology and simulation," Int’l J. of Biomed. Imaging pp. 1-7 (2006). [CrossRef]
  14. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004). [CrossRef] [PubMed]
  15. C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).
  16. G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005). [CrossRef] [PubMed]
  17. A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef] [PubMed]
  18. N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006). [CrossRef] [PubMed]
  19. H. Dehghani, S. Davis, S. Jiang, B. Pogue, K. Paulsen, and M. Patterson, "Spectrally-resolved bioluminescence optical tomography," Opt. lett. 31, 365-367 (2006). [CrossRef] [PubMed]
  20. H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10(4), 041,210 (2005). [CrossRef]
  21. H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).
  22. G. Wang, H. Shen, W. Cong, S. Zhao, and G. Wei, "Temperature-modulated bioluminescence tomography," Patent disclosure filed with the University of Iowa Research Foundation. University of Iowa (2006).
  23. R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991). [CrossRef] [PubMed]
  24. C. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).
  25. J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003). [CrossRef]
  26. R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006). [CrossRef]
  27. G. Wei, "Vibration analysis by discrete singular convolution," J. Sound Vibration 244, 535-553 (2001). [CrossRef]
  28. G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002). [CrossRef]
  29. J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942). [CrossRef] [PubMed]
  30. W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955). [CrossRef] [PubMed]
  31. R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968). [PubMed]
  32. P. Lele, "Concurrent detection of the production of ultrasonic lesions," Med. Biol. Engng. 4, 451-456 (1996). [CrossRef]
  33. K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969). [CrossRef] [PubMed]
  34. L. Frizzell, "Threshold dosages for damage to mammalian liver by high-intensity focused ultrasound," IEEE T. Ultrason. Ferroelectr. Freq. Contral (1998).
  35. A. Williams, Ultrasound: Biological effects and potential hazards (Medical Physics Series 1983, Academic Press, London, 1983).
  36. G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991). [CrossRef]
  37. M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000). [CrossRef] [PubMed]
  38. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003). [CrossRef]
  39. S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998). [CrossRef] [PubMed]
  40. X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998). [CrossRef] [PubMed]
  41. K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006). [CrossRef] [PubMed]
  42. A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004). [CrossRef]
  43. J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005). [CrossRef] [PubMed]
  44. P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005). [CrossRef] [PubMed]
  45. P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005). [CrossRef]
  46. E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999). [CrossRef]
  47. A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990). [CrossRef]
  48. R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996). [CrossRef]
  49. X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999). [CrossRef]
  50. J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998). [CrossRef]
  51. R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003). [CrossRef] [PubMed]
  52. T. Szabo, "Time domain wave equation for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994)). [CrossRef]
  53. <jrn>. W. Chen and S. Holm, "Modified Szabo wave equation models for lossy media obeying frequency power law," J. Acoust. Soc. Am. (2003).</jrn> [CrossRef] [PubMed]
  54. G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003). [CrossRef] [PubMed]
  55. M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995). [CrossRef]
  56. A. Peplow, "Numerical predictions of sound propagation from a cutting over a road-side noise barrier," J. Comput. Acoust. 13, 145-162 (2005). [CrossRef]
  57. S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002). [CrossRef] [PubMed]
  58. M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).
  59. R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004). [CrossRef]
  60. R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996). [CrossRef]
  61. K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989). [CrossRef]
  62. R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001). [CrossRef]
  63. C. Church, "The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles," J. Acoust. Soc. Am. (97). [PubMed]
  64. H. Pennes, "nalysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 19-122 (1948).
  65. D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005). [CrossRef] [PubMed]
  66. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  67. F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979). [CrossRef] [PubMed]
  68. H. Bowman, Thermodynamics of tissue heating: modeling and measurements for temperature distributions Physics Aspect of Hyperthermia ed G H Nussbaum (American Institute of Physics, New York 511-48, 1982).
  69. V. Tuchin., Tissue Optics: Light scattering methods and Instruments for medical Diagnosis (SPIE, Bellingham, WA, 2000).
  70. W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990). [CrossRef]
  71. A. Welch and M. van Gemert, Optical Thermal Response of Laser-Irradiated Tissue (Plenum Press, New York, 1995).
  72. L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982). [CrossRef]
  73. G. Wang, Y. Li, and M. Jiang, "Computational optical biopsy methods, techniques and apparatus," Patent disclosure filed with Univ. of Iowa Research Foundation in Dec. 2003; provisional patent filed in 2004.
  74. Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited