OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7878–7888

Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 7878-7888 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Study of dynamics of single molecules by Fluorescence Correlation Spectroscopy (FCS) requires that the rate of photon detection per molecule be high, that the background be low, and that there be a large change in fluorescent signal associated with change in a position of a molecule. FCS applied to microscopic Surface Plasmon Coupled Emission (SPCE) suggests a powerful method to meet those requirements. In this method, the observational volume is made shallow by placing a sample on a thin metal film and illuminating it with the laser beam at Surface Plasmon Resonance (SPR) angle through high numerical aperture objective. The illuminating light excites surface plasmons in the metal film that produce an evanescent wave on the aqueous side of the interface. The thickness of the detection volume is a product of evanescent wave penetration depth and distance-dependent fluorescence coupling to surface plasmons. It is further reduced by a metal quenching of excited fluorophores at a close proximity (below 10 nm) to a surface. The fluorescent light is emitted through the metal film only at an SPCE angle. Objective collects emitted light, and a confocal aperture inserted in its conjugate image plane reduces lateral dimensions of the detection volume to a fraction of a micrometer. By using diffusion of fluorescent microspheres, we show that SPCE-FCS is an efficient method to measure molecular diffusion and that on gold surface the height of the detection volume is ~35 nm.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: June 22, 2006
Revised Manuscript: July 31, 2006
Manuscript Accepted: August 1, 2006
Published: August 21, 2006

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, "Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope," Opt. Express 14, 7878-7888 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Rigler, and E. L. Elson, "Fluorescence Correlation Spectroscopy: Theory and Applications," (Berlin Springer, 2001).
  2. M. K. Auer, J. Moore, F. J. Meyer-Almes, R. Guenther, A. J. Pope, and K. A. Stoeckli, "Fluorescence correlation spectroscopy: lead discovery by miniaturized HT," Drug Discovery Today 3, 457-465 (1998). [CrossRef]
  3. L Edman, U. Mets, and R. Rigler, "Conformational transitions monitored for single molecules in solution,"Proc Natl. Acad. Sci. U S A. 93, 6710-6715 (1996). [CrossRef] [PubMed]
  4. N. L. Thompson, T. P. Burghardt, and D. Axelrod, "Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy," Biophys J. 33, 435-454 (1981). [CrossRef] [PubMed]
  5. A. M. Lieto, R. C. Cush, and N. L. Thompson, "Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy,"Biophys J. 85, 3294-302 (2003). [CrossRef] [PubMed]
  6. R. L. Hansen, and J. M. Harris, "Measuring reversible adsorption kinetics of small molecules at solid/liquid interfaces by total internal reflection fluorescence correlation spectroscopy," Anal. Chem. 70, 4247-4256 (1998). [CrossRef]
  7. T. Ruckstuhl, and S. Seeger, "Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy," Opt. Lett. 29, 569-571 (2004). [CrossRef] [PubMed]
  8. K. Hassler, T. Anhut, R. Rigler, M. Gosch, and T. Lasser, "High count rates with total internal reflection fluorescence correlation spectroscopy," Biophys J. 88, L01-L03 (Epub 2004). [CrossRef] [PubMed]
  9. P. Schwille, "TIR-FCS: staying on the surface can sometimes be better," Biophys J. 85, 2783-2784 (2003). [CrossRef] [PubMed]
  10. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled emission with gold films," J. Phys. Chem. 108,12568-12574 (2004). [CrossRef]
  11. I. Gryczynski, J. Malicka, E. M. Goldys, J. R. Lakowicz, N. Calander, and Z. Gryczynski, "Two-photon induced surface plasmon-coupled emission," Thin Solid Films 491, 173-176 (2005). [CrossRef]
  12. Z. Gryczynski, J. Borejdo, E. Matveeva, N. Calander, R. Grygorczyk, J. Harper, and I. Gryczynski, "Minimization of detection volume by Surface Plasmon-Coupled Emission," in Ultrasensitive and Single-Molecule Detection Technologies, J. Enderlein, and Z. K. Gryczynski, eds., Proc. SPIE S1-S10 (2006).
  13. Z. Gryczynski, J. Borejdo, N. Calander, E. G. Matveeva, and I. Gryczynski, "Minimization of detection volume by surface plasmon-coupled emission," Anal. Biochem., in press (2006). [CrossRef] [PubMed]
  14. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, "Application of Surface Plasmon Coupled Emission to study of muscle" Biophys. J., in press (2006). [CrossRef] [PubMed]
  15. T. P. Burghardt, J. E. Charlesworth, M. F. Halsetad, J. E. Tarara, and K. Ajtai, "In situ fluorescent protein imaging with metal film enhanced total internal reflection microscopy," Biophys J. 90, 4662-4671 (2006). [CrossRef] [PubMed]
  16. J. Enderlein, and T. Ruckstuhl, "The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection," Opt. Express 13, 8855-8865 (2005). [CrossRef] [PubMed]
  17. E. Matveeva, Z. Gryczynski, I. Gryczynski, J. Malicka, and J. R. Lakowicz, "Myoglobin immunoassay utilizing directional surface plasmon-coupled emission," Anal. Chem. 76, 6287-6292 (2004). [CrossRef] [PubMed]
  18. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, "Surface plasmon-coupled ultraviolet emission of 2,5-diphenyl-1,3,4-oxadiazole,"J. Phys. Chem. B. 108,19114-19118 (2004). [CrossRef] [PubMed]
  19. I. Gryczynski, J. Malicka, W. Jiang, H. Fischer, W.C. W. Chan, Z. Gryczynski, W. Grudzinski, and J. R. Lakowicz, "Surface plasmon-coupled emission of quantum dots,"J. Phys. Chem. B. 109,1088-1093 (2005). [CrossRef]
  20. V. Kiessling, B. Muller, and P. Fromherz, "Extracellular resistance in cells adhesion measured with a transistor probe," Langmuir 16, 3517-3521 (2000). [CrossRef]
  21. D. Axelrod, "Total internal reflection fluorescence microscopy," Methods Cell Biol. 30, 245-270 (1989). [CrossRef] [PubMed]
  22. TFC-Calc, "Optical Coating Design Software," Software Spectra, Inc., Portland, OR 97229 (2005).
  23. T. E. Starr and N. L. Thompson, "Total internal reflection with fluorescence correlation spectroscopy: combined surface reaction and solution diffusion," Biophys J. 80,1575-84 (2001). [CrossRef] [PubMed]
  24. C. Tanford, "Physical Chemistry of Macromolecules" (John Wiley & Sons New York, 1963).
  25. D. Braun and P. Fromherz, "Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye," Biophys J. 87,1351-9 (2004). [CrossRef] [PubMed]
  26. Y. Iwanaga, D. Braun, and P. Fromherz, "No correlation of focal contacts and close adhesion by comparing GFP-vinculin and fluorescence interference of Dil," Eur Biophys J. 30,17-26 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited