OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 7931–7942

High efficiency photonic crystal based wavelength demultiplexer

Meron Y. Tekeste and Jan M. Yarrison-Rice  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 7931-7942 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1070 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A highly efficient design of a two-channel wavelength demultiplexer in the visible region is presented with finite-difference time-domain simulations. The design process is described in detail with particular attention to the challenges inherent in fabrication of an actual device. A 2D triangular lattice photonic crystal with 75nm air pores in a silicon nitride planar waveguide provides the confinement for visible light. The device losses due to fabrication errors such as stitching misalignment of write fields during e-beam lithography and variation in air pore diameters from etching are modeled using realistic parameters from initial fabrication runs. These simulation results will be used to guide our next generation design of high efficiency photonic crystal based demultiplexing devices.

© 2006 Optical Society of America

OCIS Codes
(060.1810) Fiber optics and optical communications : Buffers, couplers, routers, switches, and multiplexers
(220.3740) Optical design and fabrication : Lithography

ToC Category:
Optical Design and Fabrication

Original Manuscript: June 13, 2006
Revised Manuscript: August 7, 2006
Manuscript Accepted: August 8, 2006
Published: August 21, 2006

Meron Y. Tekeste and Jan M. Yarrison-Rice, "High efficiency photonic crystal based wavelength demultiplexer," Opt. Express 14, 7931-7942 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003). [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  3. T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001). [CrossRef]
  4. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002). [CrossRef]
  5. E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999) [CrossRef]
  6. C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003). [CrossRef]
  7. S. Kim, I. Park, H. Lim, and C. -S. Kee, "Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback," Opt. Express 12, 5518-5525 (2004). [CrossRef] [PubMed]
  8. A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001). [CrossRef]
  9. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol.,  19, 1970-1975, (2001). [CrossRef]
  10. D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002). [CrossRef] [PubMed]
  11. J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004). [CrossRef]
  12. F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides," Opt. Express 12, 1119-1125 (2004). [CrossRef] [PubMed]
  13. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413-2422 (2006). [CrossRef] [PubMed]
  14. N. J. Florous, K. Saitoh, and M. Koshiba, "Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology," Opt. Lett. 30, 2736-2738 (2005).http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-20-2736 [CrossRef] [PubMed]
  15. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006). [CrossRef]
  16. FDTD computation by EMPLab software running on EMPhotonics Computer.
  17. S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001). [CrossRef]
  18. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, (John Wiley & Sons, 2001), Chap. 2. [CrossRef]
  19. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N. J. 1995), Chap. 5.
  20. M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001). [CrossRef]
  21. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998). [CrossRef]
  22. M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).
  23. R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: GIF (1183 KB)     
» Media 2: GIF (2071 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited