OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 17 — Aug. 21, 2006
  • pp: 8001–8012

Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films

Sean M. Pursel, Mark W. Horn, and Akhlesh Lakhtakia  »View Author Affiliations

Optics Express, Vol. 14, Issue 17, pp. 8001-8012 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2451 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength regime of the circular Bragg phenomenon, exhibited by chiral sculptured thin films fabricated using the serial bideposition technique, blue shifts as a result of post-deposition annealing. This blue shift can be attributed to the net effect of three material changes that occur during annealing: a small reduction in helical pitch, an increase in the relative permittivity of the column material changing from amorphous to crystalline, and a density reduction due to columnar thinning from the same amorphous-to-crystalline transition.

© 2006 Optical Society of America

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(260.1440) Physical optics : Birefringence
(310.1860) Thin films : Deposition and fabrication
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: August 2, 2006
Revised Manuscript: August 8, 2006
Manuscript Accepted: August 8, 2006
Published: August 21, 2006

Sean M. Pursel, Mark W. Horn, and Akhlesh Lakhtakia, "Blue-shifting of circular Bragg phenomenon by annealing of chiral sculptured thin films," Opt. Express 14, 8001-8012 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Laktakia and R. Messier, "The key to a thin film HBM: the Motohiro-Taga interface," in Proceedings of Chiral ’94: 3rd International Workshop on Chiral, Bi-Isotropic and Bi-Anisotropic Media, F. Mariotte and J.-P. Parneix, eds., Perigueux, France, pp. 125-130 (1994).
  2. A. Lakhtakia, R. Messier, M. J. Brett, and K. Robbie, "Sculptured thin films (STFs) for optical, chemical and biological applications," Innovations Mater. Res. 1, 165-176 (1996).
  3. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE Press, Bellingham, WA, 2005). [CrossRef]
  4. I. Hodgkinson and Q. H. Wu, "Inorganic chiral optical materials," Adv. Mater. 13, 889-897 (2001). [CrossRef]
  5. S. M. Pursel, M. W. Horn, M. C. Demirel, and A. Lakhtakia, "Growth of sculptured polymer submicronwire assemblies by vapor deposition," Polymer 46, 9544-9548 (2005). [CrossRef]
  6. A. Lakhtakia, M. C. Demirel, M. W. Horn, and J. Xu, "Six emerging directions in sculptured-thin-film research," Adv. Solid State Phys. 46 (2006); in press.
  7. V. C. Venugopal and A. Lakhtakia, "Electromagnetic plane-wave response characteristics of non-axially excited slabs of dielectric thin-film helicoidal bianisotropic mediums," Proc. R. Soc. Lond. A 456, 125-161 (2000). [CrossRef]
  8. A. Lakhtakia, "Enhancement of optical activity of chiral sculptured thin films by suitable infiltration of void regions," Optik 112, 145-148 (2001). [CrossRef]
  9. Q. H. Wu, I. J. Hodgkinson, and A. Lakhtakia, "Circular polarization filters made of chiral sculptured thin films: experimental and simulation results," Opt. Eng. 39, 1863-1868 (2000). [CrossRef]
  10. I. Hodgkinson, Q. H. Wu, B. Knight, A. Lakhtakia, and K. Robbie, "Vacuum deposition of chiral sculptured thin films with high optical activity," Appl. Opt. 39, 642-649 (2000). [CrossRef]
  11. N. O. Young and J. Kowal, "Optically active fluorite films," Nature 183, 104-105 (1959). [CrossRef]
  12. M. W. Horn, M. D. Pickett, R. Messier, and A. Lakhtakia, "Blending of nanoscale and microscale in uniform large-area sculptured thin-film architectures," Nanotechnology 15, 303-310 (2004). [CrossRef]
  13. C. Ting and S. Chen, "Structure evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films," J. Appl. Phys 88, 4628-4633 (2000). [CrossRef]
  14. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, "Room temperature deposition of a TiO2 thin film from aqueous peroxotitanate solution," J. Mater. Chem. 13, 608-613 (2003). [CrossRef]
  15. A. C. van Popta, J. C. Sit, and M. J. Brett, "Optical properties of porous helical thin films and the effects of post-deposition annealing," in Organic Optoelectronics and Photonics, P. L. Heremans, M. Muccini, and H. Hofstraat, eds., Proc. SPIE 5464, 198-208 (2004). [CrossRef]
  16. M. Suzuki, T. Ito, and Y. Taga, "Morphological stability of TiO2 thin films with isolated columns," Jpn. J. Appl. Phys.  40, L398-L400 (2001). [CrossRef]
  17. I. Hodgkinson, Q. H. Wu, and K. M. McGrath, "Moisture adsorption effects in biaxial and chiral optical thin film coatings," in Engineered Nanostructural Films and Materials, A. Lakhtakia, and R. F. Messier, eds., Proc. SPIE 3790, 184-194 (1999). [CrossRef]
  18. H. Selhofer, E. Ritter, and R. Linsbod, "Properties of titanium dioxide films prepared by reactive electron-beam evaporation from various starting materials," Appl. Opt. 41, 756-762 (2002). [CrossRef] [PubMed]
  19. C. Chen, M. W. Horn, S. Pursel, C. Ross, and R. W. Collins, "The ultimate in real time ellipsometry: multichannel mueller matrix spectroscopy," Appl. Surf. Sci.(in press2006).
  20. J. A. Sherwin, A. Lakhtakia, and I. Hodgkinson, "On calibration of a nominal structure-property relationship model for chiral sculptured thin films by axial transmittance measurements," Opt. Commun. 209, 369-375 (2002). [CrossRef]
  21. R. Messier and R. C. Ross, "Evolution of microstucture in amorphous hydrogenated silicon," J. Appl. Phys. 53, 6220-6225 (1982). [CrossRef]
  22. R. Messier and J. E. Yehoda, "Geometry of thin film morphology," J. Appl. Phys. 58, 3739-3746 (1985). [CrossRef]
  23. A. Lakhtakia and M. W. Horn, "Bragg-regime engineering by columnar thinning of chiral sculptured thin films," Optik 114, 556-560 (2003). [CrossRef]
  24. A. Lakhtakia and M. W. McCall, "Circular polarization filters," in: Encyclopedia of Optical Engineering, R. G. Driggers, ed., (Marcel Dekker, New York, 2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig 2. Fig. 3.
Fig. 4.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited