OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8138–8153

Spectroscopic phase-dispersion optical coherence tomography measurements of scattering phantoms

Shellee D. Dyer, Tasshi Dennis, Lara K. Street, Shelley M. Etzel, Thomas A. Germer, and Andrew Dienstfrey  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8138-8153 (2006)
http://dx.doi.org/10.1364/OE.14.008138


View Full Text Article

Enhanced HTML    Acrobat PDF (501 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a novel technique to determine the size of Mie scatterers with high sensitivity. Our technique is based on spectral domain optical coherence tomography measurements of the phase dispersion that is induced by the scattering process. We use both Mie scattering predictions and dispersion measurements of phantoms to show that the scattering dispersion is very sensitive to small changes in the size and/or refractive index of the scatterer. We also show the light scattered from a single sphere is, in some cases, non-minimum phase. Therefore, the phase is independent of the intensity of the scattered light, and both intensity and phase must be measured directly in order to characterize more completely the scattering problem. Phase dispersion measurements may have application to distinguishing the size and refractive index of scattering particles in biological tissue samples.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.2030) Physical optics : Dispersion
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: June 19, 2006
Revised Manuscript: August 15, 2006
Manuscript Accepted: August 21, 2006
Published: September 1, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Shellee D. Dyer, Tasshi Dennis, Lara K. Street, Shelley M. Etzel, Thomas A. Germer, and Andrew Dienstfrey, "Spectroscopic phase-dispersion optical coherence tomography measurements of scattering phantoms," Opt. Express 14, 8138-8153 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8138


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). [CrossRef]
  2. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  3. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J.G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). [CrossRef]
  4. D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487-5501 (2004). [CrossRef] [PubMed]
  5. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003). [CrossRef] [PubMed]
  6. C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005). [CrossRef] [PubMed]
  7. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001). [CrossRef]
  8. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and substructure measured using angle-resolved low-coherence interferometry," Biophys. J. 82, 2256-2264 (2002). [CrossRef] [PubMed]
  9. J. W. Pyhtila, R. N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003). [CrossRef] [PubMed]
  10. B. Liu, E. A. Macdonald, D. L. Stamper, and M. E. Brezinski, "Group velocity dispersion effects with water and lipid in 1.3 μm optical coherence tomography," Phys. Med. Biol. 49, 923-930 (2004). [CrossRef] [PubMed]
  11. C. Yang, A. Wax, and M. S. Feld, "Measurement of the anomalous phase velocity of ballistic light in a random medium by use of a novel interferometer," Opt. Lett. 26, 235-237 (2001). [CrossRef]
  12. M. Beck, I. A. Walmsley, and J. D. Kafka, "Group delay measurements of optical components near 800 nm," IEEE J. Quantum Electron. 27, 2074-2081 (1991). [CrossRef]
  13. G. Lenz, B. J. Eggleton, C. R. Giles, C. K. Madsen, and R. E. Slusher, "Dispersive properties of optical filters for WDM systems," IEEE J. Quantum Electron. 34, 1390-1402 (1998). [CrossRef]
  14. G. Mie, "Beitrage zur Optik trüber Medien speziell kolloidaler Metallösungen," Ann. Phys. 25, 377-445 (1908). [CrossRef]
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983), Chap. 4.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981), Chap. 9.
  17. T. A. Germer, SCATMECH: Polarized Light Scattering C++ Class Library, available at http://physics.nist.gov/scatmech.
  18. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, "Refractive-index of water and steam as function of wavelength, temperature, and density," J. Phys. Chem. Reference Data 19, 677-717 (1990). [CrossRef]
  19. H. Dym and H. P. McKean, Fourier Series and Integrals (Academic Press, New York, 1972), Chap. 3.5.
  20. M. E. Froggatt, T. Erdogan, J. Moore, and S. Shenk, "Optical frequency domain characterization (OFDC) of dispersion in optical fiber Bragg gratings," in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest (Optical Society of America, Washington, DC, 1999), pp. 227-229.
  21. V. Laude, "Noise analysis of the measurement of group delay in Fourier white-light interferometric cross correlation," J. Opt. Soc. Am. B 19, 1001-1008 (2002). [CrossRef]
  22. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, "Frequency-domain optical coherence tomography based on minimum-phase functions," in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine X, V. V. Tuchin, J. A. Izatt, and J. G. Fujimoto, eds., Proc. SPIE 6079, 607912 (2006). [CrossRef]
  23. http://www.dow.com/glycerine/resources/dwnlit.htm, http://www.2spi.com/catalog/standards/microspheres.shtml.
  24. X. Ma, J. A. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X.-H. Hu, "Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm," Phys. Med. Biol. 48, 4165-4172 (2003). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1975), Chap. 2.3.3.
  26. J. E. Bertie and Z. Lan, "Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H20(l) at 25 ˚C between 15,000 and 1 cm-1," Appl. Spectrosc. 50, 1047-1057 (1996). [CrossRef]
  27. P. R. Cooper, "Refractive-index measurements of liquids used in conjunction with optical fibers," Appl. Opt. 22, 3070-3072 (1983). [CrossRef] [PubMed]
  28. K. Nikolova, I. Panchev, and S. Sainov, "Optical characteristics of biopolymer films from pectin and gelatin," J. Optoelectronics Adv. Mater. 7, 1439-1444 (2005).
  29. A. Dienstfrey, P. D. Hale, D. A. Keenan, T. S. Clement, and D. F. Williams, "Minimum-phase calibration of sampling oscilloscopes," IEEE Trans. Microwave Theory Tech. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited