OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8232–8239

Group front evolution of Gaussian beam refracted from a right- to left-handed medium

Jacek Pniewski and Tomasz Szoplik  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8232-8239 (2006)
http://dx.doi.org/10.1364/OE.14.008232


View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Local enhancement of the power flow in a group front of a transient sinusoidal Gaussian beam refracted at the boundary of right- and left-handed media is observed. In vacuum the beam reaches a sinusoidal steady state that is a form of continuous wave (CW) Gaussian beam after 6 wave periods. Behind the interface plane in a low loss double negative medium with normal dispersion the individual Fourier components of the beam diffract at different angles and have diversified phase speeds. This results in the group front build-up that propagates on with the beam and moves sideways with respect to the group velocity direction, where energy is transported. The enhancement is illustrated with 2-D simulations using finite difference time domain (FDTD) method.

© 2006 Optical Society of America

OCIS Codes
(120.5710) Instrumentation, measurement, and metrology : Refraction
(160.4760) Materials : Optical properties
(260.0260) Physical optics : Physical optics
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics
(350.5500) Other areas of optics : Propagation

ToC Category:
Metamaterials

History
Original Manuscript: June 12, 2006
Revised Manuscript: July 25, 2006
Manuscript Accepted: July 26, 2006
Published: September 1, 2006

Citation
Jacek Pniewski and Tomasz Szoplik, "Group front evolution of Gaussian beam refracted from a right- to left-handed medium," Opt. Express 14, 8232-8239 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett. 85, 4184-4187 (2000). [CrossRef]
  2. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625-1-15 (2001). [CrossRef]
  3. R. A. Shelby, D. R. Smith and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. R. Ruppin, "Electromagnetic energy density in a dispersive and absorptive material," Phys. Lett. A 299, 309-312 (2002). [CrossRef]
  5. J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong, "Power propagation in homogeneous isotropic frequency-dispersive left-handed media," Phys. Rev. Lett. 89, 257401-1-4 (2002). [CrossRef] [PubMed]
  6. D. R. Smith, D. Schurig, and J. B. Pendry, "Negative refraction of modulated electromagnetic waves," Appl. Phys. Lett. 81, 2713-2715 (2002). [CrossRef]
  7. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, "Negative refraction by photonic crystals," Nature 423, 604-605 (2003). [CrossRef] [PubMed]
  8. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401-1-4 (2003). [CrossRef] [PubMed]
  9. S. Foteinopoulou, E. N. Economou, and C. M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402-1-4 (2003). [CrossRef] [PubMed]
  10. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett. 90, 137401-1-4 (2003). [CrossRef] [PubMed]
  11. S. A. Cummer. "Dynamics of causal beam refraction in negative refractive index materials," Appl. Phys. Lett. 82, 2008-2010 (2003). [CrossRef]
  12. R. W. Ziolkowski and A. D. Kipple, "Causality and double-negative metamaterials," Phys. Rev. E 68, 026615-1-9 (2003). [CrossRef]
  13. P. Kolinko and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Opt. Express 11, 640-648 (2003). [CrossRef] [PubMed]
  14. R. W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662-681 (2003). [CrossRef] [PubMed]
  15. D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032-1043 (2004). [CrossRef]
  16. J. Garcia-Pomar and M. Nieto-Vesperinas, "Transmission study of prisms and slabs of lossy negative index media," Opt. Express 12, 2081-2095 (2004). [CrossRef] [PubMed]
  17. S. Dutta Gupta, R. Arun and G. S. Agarval, "Subluminal and superluminal propagation in a left-handed medium," Phys. Rev. B 69, 113104-1-4 (2004).
  18. X. Huang and W. L. Schaich, "Wave packet propagation into a negative index medium," Am. J. Phys. 72, 1232-1240 (2004). [CrossRef]
  19. W. T. Lu, J. B. Sokoloff, and S. Sridhar, "Refraction of electromagnetic energy for wave packets incident on a negative-index medium is always negative," Phys. Rev. E 69, 026604-1-5 (2004). [CrossRef]
  20. Z. M. Zhang and K. Park, "On the group front and group velocity in a dispersive medium upon refraction from a nondispersive medium," J. Heat Transfer -Trans.ASME 126, 244-249 (2004).Q1 [CrossRef]
  21. M. Scalora, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, J.W. Haus, A.M. Zheltikov, "Negative refraction of ultra-short electromagnetic pulses," Appl. Phys. B 81, 393-402 (2005). [CrossRef]
  22. H. Luo, W. Hu, X. Yi, H. Liu, J. Zhu, „Amphoteric refraction at the interface between isotropic and anisotropic media," Opt. Commun. 254, 353-360 (2005). [CrossRef]
  23. I. S. Nefedov, A. J. Viitanen, and S. A. Tretyakov, "Electromagnetic wave refraction at an interface of a double wire medium," Phys. Rev. B 72, 245113-1-9 (2005). [CrossRef]
  24. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and µ," Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  25. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA 2000).
  26. G. C. Sherman and K. E. Oughstun, "Energy-velocity description of pulse propagation in absorbing, dispersive dielectrics," J. Opt. Soc. Am. B 12, 229-247 (1995). [CrossRef]
  27. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, "Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures," Phys. Rev. E 63, 036610 (2001).Q2 [CrossRef]
  28. C.-G. Huang and Y.-Z. Zhang, "Poynting vector, energy density, and energy velocity in an anomalous dispersion medium," Phys. Rev. A 65, 015802 (2001). [CrossRef]
  29. M. Scalora, G. D'Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, M. Centini, C. Sibilia, and M. Bertolotti, "Pulse propagation, dispersion, and energy in magnetic materials," Phys. Rev. E 72, 66601-1-8 (2005). [CrossRef]
  30. T. J. Cui and J. A. Kong, "Time-domain electromagnetic energy in a frequency-dispersive left-handed medium," Phys. Rev. B 70, 205106-1-7 (2004). [CrossRef]
  31. S. A. Tretyakov, "Electromagnetic field energy density in artificial microwave materials with strong dispersion and loss," Phys. Lett. A 343, 231-237 (2005). [CrossRef]
  32. A. D. Boardman and K. Marinov, "Electromagnetic energy in a dispersive metamaterial," Phys. Rev. B 73, 165110-1-7 (2006). [CrossRef]
  33. Z. M. Thomas, T. M. Grzegorczyk, B. Wu, X. Chen, and J. A. Kong, "Design and measurement of a four-port device using metamaterials," Opt. Express 13, 4737-4744 (2005). [CrossRef] [PubMed]
  34. E. B. Treacy, "Optical pulse compression with diffraction gratings," IEEE J. Quantum Electron. 5, 454-458 (1969). [CrossRef]
  35. Zs. Bor and B. Racz, "Group velocity dispersion in prisms and its application to pulse compression and traveling-wave excitation," Opt. Commun. 54, 165-169 (1985). [CrossRef]
  36. C. Radzewicz, M. J. La Grone and J. S. Krasinski, "Interferometric measurement of femtosecond pulse distortion by lenses," Opt. Commun. 126, 185-190 (1996). [CrossRef]
  37. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, (Pergamon, New York, 1960), pp. 253-256.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: MOV (6454 KB)     
» Media 2: MOV (15602 KB)     
» Media 3: MOV (4923 KB)     
» Media 4: MOV (5856 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited