OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8240–8246

Magnetic-field enhancement in gold nanosandwiches

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll  »View Author Affiliations

Optics Express, Vol. 14, Issue 18, pp. 8240-8246 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using dispersive finite-difference time-domain (D-FDTD) simulations, we show that a pair of gold nanodisks stacked in a ‘sandwich’- like (end-fire) configuration produces a large enhancement of the magnetic field when irradiated with a plane optical wave, if the distance between the nanodisks is optically small. The effect, which can be rationalized in terms of a magnetic dipole resonance, is due the excitation of a hybridized asymmetric plasmon mode, in which the induced electrical dipoles in the two disks oscillate out-of-phase. The strong magnetic response, together with the simple morphology, suggests that Au nanosandwiches are suitable elementary building blocks for optical metamaterials that exhibit negative refraction.

© 2006 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.2110) Physical optics : Electromagnetic optics

ToC Category:

Original Manuscript: July 6, 2006
Manuscript Accepted: August 9, 2006
Published: September 1, 2006

T. Pakizeh, M. S. Abrishamian, N. Granpayeh, A. Dmitriev, and M. Käll, "Magnetic-field enhancement in gold nanosandwiches," Opt. Express 14, 8240-8246 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424,824-830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimentions," Science 311,189-193 (2006). [CrossRef] [PubMed]
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Science 440,508-511 (2006).
  4. D. R. Smith, J. B. Pendry and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305,788-792 (2004). [CrossRef] [PubMed]
  5. A. K. Sarychev, G. Shvets and V. M. Shalaev, "Magnetic plasmon resonance," Phys. Rev. E 73,036609 (2006). [CrossRef]
  6. V. P. Drachev, W. Cai, U. K. Chettiar, H. -K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck and V. M. Shalaev, "Experimental verification of an optical negative index material," Laser Phys. Lett. 3,49-55 (2006). [CrossRef]
  7. V. M. Shalaev, W. Cai, U. K. Chettiar, H. -K. Yuan, A. K. Sarychev, V. P. Drachev and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett. 30,3356-3358 (2005). [CrossRef]
  8. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev and J. Petrovic, "Nanofabricated media with negative permeability at visible frequencies," Nature 438,335-338 (2005). [CrossRef] [PubMed]
  9. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett. 95,203901 (2005). [CrossRef] [PubMed]
  10. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood and S. R. J. Brueck, "Exeprimental demonstration of near-Infrared negative-index metamaterials," Phys. Rev. Lett. 95,137404 (2005). [CrossRef] [PubMed]
  11. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov and X. Zhang, "Terahertz magnetic response from artficial materials," Science 303,1494-1496 (2004). [CrossRef] [PubMed]
  12. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny and C. Soukoulis, "Magentic response of metamaterials at 100 terahertz," Science 306,1351-1353 (2004). [CrossRef] [PubMed]
  13. V. A. Podolskiy, A. K. Sarychev and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11,735-745 (2003). [CrossRef] [PubMed]
  14. A. Dmitriev, T. Pakizeh, M. Käll, and D. S. Sutherland, "Surface plasmon hybridization in gold-silica-gold nanosandwiches," Nano Lett., submitted, (2006).
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, 1983).
  16. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  17. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. K¨ all, S. Zou and G. C. Schatz, "Confined plasmons in nanofabricated single silver particles pairs: experimental observation of strong interparticle interactions," J. Phys. Chem. B 109,1079-1087 (2005). [CrossRef]
  18. P. Hanarp, M. Käll, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107,5768-5772 (2003). [CrossRef]
  19. A. Taflove and S. C. Hagness, Computaional Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  20. D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method (IEEE Press, 2000). [CrossRef]
  21. D. F. Kelly and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. Antennas Propag. 44,792-797 (1996). [CrossRef]
  22. G. X. Fan and Q. H. Liu, "An FDTD algorithm with perfectly matched layers for general dispersive media," IEEE Trans. Antennas Propag. 48,637-646 (2000). [CrossRef]
  23. P. B. Johnson and R. W. Christy, "Optical constants of the nobel metals," Phys. Rev. B 6,4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited