OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8290–8297

Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime

Anh Tuan Nguyen, Kien Phan Huy, Edouard Brainis, Pawel Mergo, Jan Wojcik, Tomasz Nasilowski, Jurgen Van Erps, Hugo Thienpont, and Serge Massar  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8290-8297 (2006)
http://dx.doi.org/10.1364/OE.14.008290


View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study Cross Phase Modulational Instability (CPMI) -a particular form of vector modulational instability- in the anomalous dispersion regime in highly birefringent, strongly dispersive, optical fibers. When the pump power is high, the detuning of the Scalar Modulational Instability (SMI) is comparable to the detuning of the CPMI. The gain of the CPMI -which is usually much smaller than the gain of the SMI-, is then strongly enhanced and becomes much larger than the gain of the SMI. This theoretical prediction is well verified experimentally using small core photonic crystal fibers.

© 2006 Optical Society of America

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 19, 2006
Revised Manuscript: August 16, 2006
Manuscript Accepted: August 16, 2006
Published: September 1, 2006

Citation
Anh Tuan Nguyen, Kien Phan Huy, Edouard Brainis, Pawel Mergo, Jan Wojcik, Tomasz Nasilowski, Jurgen Van Erps, Hugo Thienpont, and Serge Massar, "Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime," Opt. Express 14, 8290-8297 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8290


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tai, A. Hasegawa, and A. Tomita, "Observation of modulational instability in optical fibers," Phys. Rev. Lett. 56, 135-138 (1986). [CrossRef] [PubMed]
  2. G. P. Agrawal, Nonlinear Fiber Optics, third ed., (Academic Press, San Diego, 2001).
  3. J. E. Rothenberg, "Modulational instability for normal dispersion," Phys. Rev. A 42, 682-685 (1990). [CrossRef] [PubMed]
  4. P. D. Drummond, T. A. B. Kennedy, J. M. Dudley, R. Leonhardt, and J. D. Harvey, "Cross-phase modulational instability in high-birefringence fibers," Opt. Commun. 78, 137-142 (1990). [CrossRef]
  5. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Polarization modulation instability in weakly birefringent fibers," Opt. Lett. 20, 866-868 (1995). [CrossRef] [PubMed]
  6. D. Amans, E. Brainis, M. Haelterman, Ph. Emplit, and S. Massar "Vector modulation instability induced by vacuum fluctuations in highly birefringent fibers in the anomalous-dispersion regime," Opt. Lett. 30, 1051-1053 (2005). [CrossRef] [PubMed]
  7. F. Biancalana, and D. V. Skryabin, "Vector modulational instabilities in ultra-small core optical fibres," J. Opt. A: Pure Appl. Opt. 6301-306 (2004). [CrossRef]
  8. G. Millot, A. Sauter, J. M. Dudley, L. Provino, and R. S. Windeler, "Polarization mode dispersion and vectorial modulational instability in air-silica microstructure fiber," Opt. Lett. 27, 695-697 (2002). [CrossRef]
  9. B. Kibler, C. Billet, J. M. Dudley, R. S. Windeler, and G. Millot, "Effects of structural irregularities on modulational instability phase matching in photonic crystal fibers," Opt. Lett. 29, 1903-1905 (2004). [CrossRef] [PubMed]
  10. A. Tonello, S. Pitois, S. Wabnitz, G. Millot, T. Martynkien, W. Urbanczyk, J. Wojcik, A. Locatelli, M. Conforti, and C. De Angelis, "Frequency tunable polarization and intermodal modulation instability in high birefringence holey fiber," Opt. Express 14, 397-404 (2006). [CrossRef] [PubMed]
  11. J. S. Y. Chen, G. K. L. Wong, S. G. Murdoch, R. J. Kruhlak, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Cross-phase modulation instability in photonic crystal fibers," Opt. Lett. 31, 873-875 (2006). [CrossRef] [PubMed]
  12. R. J. Kruhlak, G. K. Wong, J. S. Chen, S. G. Murdoch, R. Leonhardt, J. D. Harvey, N. Y. Joly, and J. C. Knight, "Polarization modulation instability in photonic crystal fibers," Opt. Lett. 31, 1379-1381 (2006). [CrossRef] [PubMed]
  13. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-fibre photon pair source for quantum communications," IEEE Photon. Technol. Lett. 14, 983-985 (2002). [CrossRef]
  14. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  15. E. Brainis, D. Amans, and S. Massar, "Scalar and vector modulation instabilities induced by vacuum fluctuations in fibers: Numerical study," Phys. Rev. A 71, 023808 (2005). [CrossRef]
  16. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L.C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  17. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited