OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8347–8353

Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials

Dong Jun Kang, Jong-Pil Jeong, and Byeong-Soo Bae  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8347-8353 (2006)
http://dx.doi.org/10.1364/OE.14.008347


View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photosensitive sol-gel hybrid (SGH) materials exhibited the peculiar photoinduced migration behavior of unreacted molecules from unexposed areas to exposed areas by selective UV exposure. Using the photoinduced migration mechanism of the photosensitive SGH materials, the microlens array (MLA) with a smooth surface was directly photofabricated, and the focal length was controlled by changing the photoinduced migration parameters. The higher photoactive monomer content and the thicker film creating a higher curvature produced a smaller focal length of the MLA. Thus, a simple fabrication and easy control of the focal length can be applicable to a fabrication of an efficient MLA.

© 2006 Optical Society of America

OCIS Codes
(160.6060) Materials : Solgel
(220.3630) Optical design and fabrication : Lenses
(220.4610) Optical design and fabrication : Optical fabrication
(230.4000) Optical devices : Microstructure fabrication

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: April 27, 2006
Revised Manuscript: July 27, 2006
Manuscript Accepted: July 28, 2006
Published: September 1, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Dong Jun Kang, Jong-Pil Jeong, and Byeong-Soo Bae, "Direct photofabrication of focal-length-controlled microlens array using photoinduced migration mechanisms of photosensitive sol-gel hybrid materials," Opt. Express 14, 8347-8353 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996). [CrossRef]
  2. T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004). [CrossRef]
  3. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005). [CrossRef]
  4. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003). [CrossRef]
  5. M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004). [CrossRef]
  6. X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000). [CrossRef]
  7. Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001). [CrossRef]
  8. R. R. A. Syms, "Refractive collimating microlens arrays by surface tension self-assembly," IEEE Photon. Technol. Lett. 12, 1507-1508 (2000). [CrossRef]
  9. S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002). [CrossRef]
  10. R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999). [CrossRef]
  11. T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004). [CrossRef]
  12. A. Annapoorna, H. Tokuyuki, Y. L. Alice, and H. Lambertus, "Two-photon holographic recording in aluminosilicate glass containing silver particles," Opt. Lett. 22, 967-969 (1997). [CrossRef]
  13. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998). [CrossRef]
  14. D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003). [CrossRef] [PubMed]
  15. D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004). [CrossRef]
  16. D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004). [CrossRef]
  17. M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005). [CrossRef]
  18. D. J. Kang, W. S. Kim and B. S. Bae, "Direct Photofabrication of Refractive-index-modulated Multimode Optical Waveguide Using Photosensitive Sol-gel Hybrid Materials," Appl. Phys. Lett. 87, 221106 1-3 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited