OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8382–8392

Direct observation of Gouy phase shift in a propagating optical vortex

Junichi Hamazaki, Yuriya Mineta, Kazuhiko Oka, and Ryuji Morita  »View Author Affiliations

Optics Express, Vol. 14, Issue 18, pp. 8382-8392 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1250 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Direct observation of Gouy phase shift on an optical vortex was presented through investigating the intensity profiles of a modified LGpm beam with an asymmetric defect, around at the focal point. In addition, the three-dimensional trajectory of the defect was found to describe a uniform straight line. It was quantitatively found that the rotation profile of a modified LGpm beam manifests the Gouy phase effect where the rotation direction depends on only the sign of topological charge m. This profile measurement method by introducing an asymmetric defect is a simple and useful technique for obtaining the information of the Gouy phase shift, without need of a conventional interference method.

© 2006 Optical Society of America

OCIS Codes
(230.6120) Optical devices : Spatial light modulators
(350.1370) Other areas of optics : Berry's phase

ToC Category:
Physical Optics

Original Manuscript: June 23, 2006
Revised Manuscript: August 4, 2006
Manuscript Accepted: August 15, 2006
Published: September 1, 2006

Junichi Hamazaki, Yuriya Mineta, Kazuhiro Oka, and Ryuji Morita, "Direct observation of Gouy phase shift in a propagating optical vortex," Opt. Express 14, 8382-8392 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev. A45, 8185-8189 (1992). [CrossRef] [PubMed]
  2. A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Biophys. J. 61, 569-582 (1992). [CrossRef] [PubMed]
  3. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999). [CrossRef] [PubMed]
  4. K. T. Gahagan and G. A. Swartzlander, Jr., "Optical vortex trapping of particles," Opt. Lett. 21, 827-829 (1996). [CrossRef] [PubMed]
  5. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, "Novel optical trap of atoms with a doughnut beam," Phys. Rev. Lett. 78, 4713-4716 (1997). [CrossRef]
  6. E. M. Wright, J. Arlt, K. Dholakia, K. T. Gahagan, and G. A. Swartzlander, Jr., "Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams," Phys. Rev. A 63, 013608-1-7 (2001). [CrossRef]
  7. J. Tempere, J. T. Devreese, E. R. I. Abraham, K. T. Gahagan, and G. A. Swartzlander, Jr., "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603-1-8 (2001). [CrossRef]
  8. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, "Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner," Opt. Lett. 22, 52-54 (1997). [CrossRef] [PubMed]
  9. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbet, P. E. Bryant, and K. Dholaki, "Controlled rotation of optically trapped microscopic particles," Science 292, 912-914 (2001). [CrossRef] [PubMed]
  10. V. Garćes-Chávez, D. M. McGloin, M. J. Padgett, W. Dultz, H. Schmitzer, and K. Dholakia, "Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle," Phys. Rev. Lett. 91, 093602-1-4 (2003). [CrossRef] [PubMed]
  11. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  12. A. Vaziri, G. Weihs, and A. Zeilinger, "Experimental two-photon, three-dimensional entanglement for quantum communication," Phys. Rev. Lett. 89, 240401-1-4 (2002). [CrossRef] [PubMed]
  13. G. Molina-Terriza, J. P. Torres, and L. Torner, "Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum," Phys. Rev. Lett. 88, 013601-1-4 (2001). [CrossRef]
  14. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, "Second-harmonic generation and the orbital angular momentum of light," Phys. Rev. A 54, R3742-3745 (1996). [CrossRef] [PubMed]
  15. D. P. Caetano, M. P. Almeida, P. H. Souto Ribeiro, J. A. O. Huguenin, B. Coutinho dos Santos, and A. Z. Khoury, "Conservation of orbital angular momentum in stimulated down-conversion," Phys. Rev. A 66, R041801-1-4 (2002). [CrossRef]
  16. A. Vinçotte and L. Bergé, "Femtosecond optical vortices in air," Phys. Rev. Lett. 95, 193901-1-4 (2005). [CrossRef] [PubMed]
  17. D. Neshev, A. Nepomnyashchy, and Y. S. Kivshar, "Nonlinear Aharonov-Bohm scattering by optical vortices," Phys. Rev. Lett. 87, 043901-1-4 (2001). [CrossRef] [PubMed]
  18. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984). [CrossRef]
  19. R. Simon and N. Mukunda, "Bargmann invariant and the geometry of the Gouy effect," Phys. Rev. Lett. 70, 880-883 (1993). [CrossRef] [PubMed]
  20. D. Subbarao, "Topological phase in Gaussian beam optics," Opt. Lett. 20, 2162-2164 (1995). [CrossRef] [PubMed]
  21. S. Feng and H. G. Winful, "Physical origin of the Gouy phase shift," Opt. Lett. 26, 485-487 (2001). [CrossRef]
  22. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, "Geometric quantum computation using nuclear magnetic resonance," Nature 403, 869-871 (2000). [CrossRef] [PubMed]
  23. L.-M. Duan, J. I. Cirac, and P. Zoller, "Geometric manipulation of trapped ions for quantum computation," Science 292, 1695-1697 (2001). [CrossRef] [PubMed]
  24. A. B. Ruffin, J. V. Rudd, J. F. Whitaker, S. Feng, and H. G. Winful, "Direct observation of the Gouy phase shift with single-cycle terahertz pulses," Phys. Rev. Lett. 83, 3410-3413 (1999). [CrossRef]
  25. R. W. McGown, R. A. Cheville, and D. Grischkowsky, "Direct observation of the Gouy phase shift in THz impulse ranging," Appl. Phys. Lett. 76, 670-672 (2000). [CrossRef]
  26. F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmarkis, M. Lezius, and F. Karusz, "Gouy phase shift for few-cycle-laser pulses," Phys. Rev. Lett. 92, 113001-1-4 (2004). [CrossRef] [PubMed]
  27. L. G. Gouy, "Sur une propriete nouvelle des ondes lumineuses," Acad. Sci., Paris, C. R.  110, 1251-1253 (1890).
  28. C. R. Carpenter, "Gouy phase advance with microwaves," Am. J. Phys. 27, 98-100 (1959).
  29. J. H. Chow, G. de Vine, M. B. Gray, and D. E. McClelland, "Measurement of Gouy phase evolution by use of mode interference," Opt. Lett. 29, 2339-2341 (2004). [CrossRef] [PubMed]
  30. J. Arlt, "Handedness and azimuthal energy flow of optical vortex beams," J. Mod. Opt. 50, 1573-1580 (2003).
  31. B. Luther-Davies, R. Powels, and V. Tikhonenko, "Nonlinear rotation of three-dimensional dark solitons in a Gaussian laser beam," Opt. Lett. 19, 1816-1818 (1994). [CrossRef] [PubMed]
  32. F. Flossmann, U. T. Schwarz, and M. Maier, "Optical vortices in a Laguerre-Gaussian LG01beam," J. Mod. Opt. 52, 1009-1017 (2005). [CrossRef]
  33. K. O’Holleran, M. J. Padgett, and M. R. Dennis, "Topology of optical vortex lines formed by the interference of three, four, and five plane waves," Opt. Express 14, 3039-3044 (2006). [CrossRef]
  34. M. J. Padgett and L. Allen, "The Poynting vector in Laguerre-Gaussian laser modes," Opt. Commun. 121, 36-40 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited