OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8419–8424

Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide

Maksim Skorobogatiy and Andrey Kabashin  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8419-8424 (2006)
http://dx.doi.org/10.1364/OE.14.008419


View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe resonant excitation of a plasmon by the Gaussian-like leaky mode of an effectively single mode photonic crystal (PC) waveguide. Plasmon is phase matched by design with a waveguide mode, and travels in a metallic layer on the top of a PC waveguide. We observe that small changes in the ambient refractive index just outside the metal film lead to strong variations in the losses of a waveguide core mode, making such a device a good candidate for compact sensor applications. Using low refractive index core PC waveguides makes phase matching between the plasmon and PC core mode relatively easy to enforce at any wavelength of operation as modal effective refractive index in such waveguides can be readily varied in a wide range.

© 2006 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.1480) Optical devices : Bragg reflectors
(230.4170) Optical devices : Multilayers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Photonic Crystals

History
Original Manuscript: June 9, 2006
Revised Manuscript: August 13, 2006
Manuscript Accepted: August 13, 2006
Published: September 1, 2006

Citation
Maksim A. Skorobogatiy and Andrey Kabashin, "Plasmon excitation by the Gaussian-like core mode of a photonic crystal waveguide," Opt. Express 14, 8419-8424 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8419


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Agranovich, and D. L. Mills. Surface Polaritons - Electromagnetic Waves at Surfaces and Interfaces, (North-Holland, Amsterdam, 1982).
  2. E. Kretschmann, and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. A: Phys. Sci. 23, 2135 (1968).
  3. B. Liedberg, C. Nylander, and I. Lundstrom, "Surface plasmon resonance for gas detection and biosensing," Sens. Actuators B 4, 299 (1983). [CrossRef]
  4. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, and R. G. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212 (1996). [CrossRef]
  5. L. M. Zhang and D. Uttamchandani, "Optical chemical sensing employing surface plasmon resonance," Electron. Lett. 23, 1469 (1988). [CrossRef]
  6. A. V. Kabashin and P. Nikitin, "Surface plasmon resonance interferometer for bio- and chemical-sensors," Opt. Commun. 150, 5 (1998). [CrossRef]
  7. A. N. Grigorenko, P. Nikitin, and A. V. Kabashin, "Phase jumps and interferometric surface plasmon resonance imaging," Appl. Phys. Lett. 75, 3917 (1999). [CrossRef]
  8. P. Schuck, "Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules," Annu. Rev. Biophys. Biomol. Struct. 26, 541 (1997). [CrossRef] [PubMed]
  9. C. P. Lavers, and J. S. Wilkinson, "A waveguide-coupled surface-plasmon sensor for an aqueous environment," Sens. Actuators B 22, 75 (1994). [CrossRef]
  10. R. Harris and J. S. Wilkinson, "Waveguide surface plasmon resonance sensors," Sens. Actuators B 29, 261 (1995). [CrossRef]
  11. M. N. Weiss, R. Srivastava, and H. Grogner, "Experimental investigation of a surface plasmon-based integratedoptic humidity sensor," Electron. Lett. 32, 842 (1996). [CrossRef]
  12. J. Homola, J. Ctyroky, M. Skalky, J. Hradiliva, and P. Kolarova, "A surface plasmon resonance based integrated optical sensor," Sens. Actuators B 39, 286 (1997). [CrossRef]
  13. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, "Surface plasmon resonance biosensor based on integrated optical waveguide," Sens. Actuators B 76, 8 (2001). [CrossRef]
  14. A. K. Sheridan, R. D. Harris, P. N. Bartlett, and J. S. Wilkinson, "Phase interrogation of an integrated optical SPR sensor," Sens. Actuators B 97, 114 (2004). [CrossRef]
  15. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Actuators B 12, 213 (1993). [CrossRef]
  16. A. Trouillet, C. Ronot-Trioli, C. Veillas, and H. Gagnaire, "Chemical sensing by surface plasmon resonance in a multimode optical fibre," Pure Appl. Opt. 5, 227 (1995). [CrossRef]
  17. J. Ctyroky, J. Homola, P. V. Lambeck, S. Musa, H. J. W. M. Hoekstra, R. D. Harris, J. S. Wilkinson, B. Usievich, and N. M. Lyndin "Theory and modelling of optical waveguide sensors utilising surface plasmon resonance," Sens. Actuators B 54, 66 (1999). [CrossRef]
  18. M. Weisser, B. Menges, and S. Mittler-Neher, "Refractive index and thickness determination of monolayers by multi mode waveguide coupled surface plasmons," Sens. Actuators B 56, 189 (1999). [CrossRef]
  19. B. D. Gupta, and A. K. Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: a theoretical study," Sens. Actuators B 107, 40 (2005). [CrossRef]
  20. M. Skorobogatiy, "Transverse lightguides in microstructured optical fibers," Opt. Lett. 30, 2991 (2005). [CrossRef] [PubMed]
  21. H. Shin, M. F. Yanik, S. H. Fan, R. Zia, and M. L. Brongersma, "Omnidirectional resonance in a metal-dielectricmetal geometry," Appl. Phys. Lett. 84, 4421 (2004). [CrossRef]
  22. H. Shin and S. H. Fan, "All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure," Phys. Rev. Lett. 96, 073907 (2006). [CrossRef] [PubMed]
  23. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, "Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air," Phys. Rev. Lett. 95, 063901 (2005). [CrossRef]
  24. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weiseberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, "Low-loss asymptotically single-mode propagation in large core OmniGuide fibers," Opt. Express 9, 748 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited