OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8434–8447

Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique

Martin Kauert, Patrick C. Stoller, Martin Frenz, and Jaro Rička  »View Author Affiliations

Optics Express, Vol. 14, Issue 18, pp. 8434-8447 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have developed a fluorescence saturation technique for accurate measurements of the absolute molecular two-photon absorption (TPA) cross-section of fluorescent dyes. We determine the TPA cross-section both from measurements at excitation intensities well below saturation onset (in the square power-law regime) and from data obtained near the onset of saturation. The two estimates have different sensitivities to potential sources of errors. Using the square power-law regime requires calibration of the overall collection efficiency of the detection channel, including the quantum yield of the dye. In the saturation regime, the two key requirements are a good knowledge of the excitation profile and an adequate model of the two-photon excitation transition. To fulfill the former requirement, we developed diagnostic tools to characterize the tightly focussed excitation beam. To satisfy the latter requirement, we included the correct polarization dependent averaging over molecular orientations in our model. We measured the TPA cross-section of Rhodamine B (RhB) and Rhodamine 6g (Rh6g) in methanol at 798 nm for linear and circular polarization. For RhB we observed excellent agreement between the TPA cross-section estimate 〈σ2〉 obtained from the square power-law regime and that obtained from the saturation regime, 〈σ2 sat . For the case of linear polarization we found: 〈σ2〉 = 12 ± 2 GM and 〈σ2 sat = 10.5 ± 2 GM. For the case of circular polarization we obtained: 〈σ2〉 = 8.4 ± 2 GM and 〈σ2 sat = 7.5 ± 2 GM. The results obtained with linear polarization are in good agreement with previously published non-linear transmission data (δ = 2σ = 20.4 GM at 800nm). For Rh6g the difference between 〈σ2〉 and 〈σ2 sat is larger, but still considerably smaller than the variance of σ2 values found in the literature.

© 2006 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:

Original Manuscript: June 7, 2006
Revised Manuscript: August 18, 2006
Manuscript Accepted: August 23, 2006
Published: September 1, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Martin Kauert, Patrick C. Stoller, Martin Frenz, and Jaro Rička, "Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique," Opt. Express 14, 8434-8447 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Oulianov, I. Tomov, A. Dvornikov, and P. Rentzepis, "Observations on the measurement of two-photon absorption cross-section," Opt. Commun. 191, 235-243 (2001). [CrossRef]
  2. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, and E. V. Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990). [CrossRef]
  3. P. Sengupta, J. Balaji, S. Banerjee, R. Philip, G. R. Kumar, and S. Maiti, "Sensitive measurement of absolute two-photon absorption cross sections," J. Chem. Phys. 112, 9201-9205 (2000). [CrossRef]
  4. P. Tian and W. Warren, "Ultrafast measurement of two-photon absorption by loss modulation," Opt. Lett. 27, 1634-1636 (2002). [CrossRef]
  5. J. Hermann and J. Ducuing, "Absolute Measurement of Two-Photon Cross Section," Phys. Rev. A 5, 2557-2568 (1972). [CrossRef]
  6. A. Fischer, C. Cremer, and E. Stelzer, "Fluorescence of coumarins and xanthenes after two-photon absorption with a pulsed titanium-sapphire laser," Appl. Opt. 34, 1989-2003 (1995). [CrossRef] [PubMed]
  7. C. Xu and W. Webb, "Measurements of two-photon excitation cross section of molecular fluorophores with data from 690 to 1050nm," J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  8. M. Albota, C. Xu, and W. Webb, "Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960nm," Appl. Opt. 37, 7352-7356 (1998). [CrossRef]
  9. C. Xu, J. Guild, and W. Webb, "Determination of absolute two-photon cross sections by in situ second-order autocorrelation," Opt. Lett. 20, 2372-2374 (1995). [CrossRef] [PubMed]
  10. J. Song, T. Inoue, H. Kawazumi, and T. Ogawa, "Determination of two photon absorption cross section of fluorescein using a mode locked titanium sapphire laser," Anal. Sci. 15, 601-603 (1999). [CrossRef]
  11. P. Kaatz and D. Shelton, "Two-photon fluorescence cross-section measurements calibrated with hyper-Rayleigh scattering," J. Opt. Soc. Am. B 16, 998-1006 (1999). [CrossRef]
  12. R. Kapoor, C. Friend, and A. Patra, "Two-photon-excited absolute emission cross-sectional measurements calibrated with a luminance meter," J. Opt. Soc. Am. B 20, 1550-1554 (2003). [CrossRef]
  13. C. Xu, J. Guild, and W. Webb, "Two-photon excitation cross-sections for commonly used biological fluorophores," Biophys. J. 68, A197 (1995).
  14. C. Wang, O.-H. Tai, Y. Wang, T. Tsai, and N. Chang, "Non-quadratic-intensity dependence of two-photon absorption induced fluorescence of organic chromophores in solution," J. Chem. Phys. 122, 084509 (2005). [CrossRef]
  15. Y. Wang, O.-H. Tai, C. Wang, and A. K.-Y. Jen, "One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution," J. Chem. Phys. 121, 7901-7907 (2004). [CrossRef] [PubMed]
  16. M. Kauert, M. Frenz, and J. Rička, "Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique," in Multiphoton Microscopy in the Biomedical Sciences VI, A. Periasamy, P.T. So, eds., Proc. SPIE 6089, 316-322 (2006).
  17. A. L. Dobryakov, S. A. Kovalenko, and N. P. Ernsting, "Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution," J. Chem. Phys. 123, 044502 (2005). [CrossRef] [PubMed]
  18. T. Gisler, H. Rger, S. Egelhaaf, J. Tschumi, P. Schurtenberger, and J. Rička, "Mode-selective dynamic light scattering: theory versus experimental realization," Appl. Opt. 34, 3546-3553 (1995). [CrossRef] [PubMed]
  19. J. Lakowicz, I. Gryczynski, and E. Danielsen, "Anomalous differential polarized phase angles for two-photon excitation with isotropic depolarizing rotations," Chem. Phys. Lett. 191, 47-53 (1992). [CrossRef]
  20. L. Favro, "Theory of the rotational Brownian motion of a free rigid body," Phys. Rev. 119, 53-61 (1960). [CrossRef]
  21. J. Rička, K. Amsler, and T. Binkert, "Flexibility of a labeled polymer chain: time resolved fluorescence depolarization measurements," Biopolymers 22, 1301-1318 (1983). [CrossRef]
  22. M. Goeppert-Mayer, "Ueber Elementarakte mit zwei Quantenspruengen," Ann. Phys. 9, 273-295 (1931). [CrossRef]
  23. W. McClain, "Excited state symmetry assignment through polarized two-photon absorption studies of fluids," J. Chem. Phys. 55, 2789-2796 (1971). [CrossRef]
  24. B. Jagatap and W. Meath, "Contributions of permanent dipole moments to molecular multiphoton excitation cross section," J. Opt. Soc. Am. B 19, 2673-2681 (2002). [CrossRef]
  25. S. S. Andrews, "Using rotational averaging to calculate the bulk response of isotropic and anisotropic samples from molecular parameters," J. Chem. Educ. 81, 877-885 (2004). [CrossRef]
  26. G. Bouwmans, F. Luan, J. Knight, P. S. J. Russel, L. Farr, B. Mangan, and H. Sabert, "Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength," Opt. Express 11, 1613-1620 (2003). [CrossRef] [PubMed]
  27. M. Wegmüller, M. Legré, N. Gisin, T. Hansen, C. Jakobsen, and J. Broeng, "Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm," Opt. Express 13, 1457-1467 (2005). [CrossRef] [PubMed]
  28. D. Phillips and D. O’Conner, Time-Correlated Single Photon Counting (Academic Press, London, 1984).
  29. W. Carter, "Electromagnetic field of a Gaussian Beam with an elliptical cross section," J. Opt. Soc. Am. 62, 1195-1201 (1972). [CrossRef]
  30. F. Könz, J. Rička, and M. Frenz, "Dynamic light scattering in the vitreous: performance of the single-mode fiber technique," Opt. Eng. 34, 2390-2395 (1995). [CrossRef]
  31. J. Demas and G. Crosby, "The measurement of photoluminescence quantum yields," J. Phys. Chem. 75, 991-1024 (1971). [CrossRef]
  32. V. Antonov and K. Hohla, "Dye stability under excimer-laser pumping II. Visible and uv dyes," Appl. Phys. 32, 9-14 (1983). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited