OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 18 — Sep. 4, 2006
  • pp: 8470–8475

Tunable spatial demultiplexer based on the Fabry–Perot filter

Xuezheng Sun, Peifu Gu, Mingyu Li, Xu Liu, Debing Wang, and Jinlong Zhang  »View Author Affiliations


Optics Express, Vol. 14, Issue 18, pp. 8470-8475 (2006)
http://dx.doi.org/10.1364/OE.14.008470


View Full Text Article

Enhanced HTML    Acrobat PDF (164 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A thin-film Fabry–Perot filter (FPF) was designed and fabricated to achieve the superprism effect. A polychromatic light, tuned at various incident angles onto the device, was used to attain more demultiplexing channels. This indicates that the FPF, which can be fabricated simply and inexpensively, can be used as a tunable demultiplexing device. Further, the transfer matrix method (TMM) and the Gaussian angular spectrum method were introduced to calculate a more-accurate spatial shift at different wavelengths and to analyze the beam-splitting phenomena in the FPF.

© 2006 Optical Society of America

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.1360) Optical devices : Beam splitters
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

History
Original Manuscript: May 22, 2006
Revised Manuscript: June 30, 2006
Manuscript Accepted: July 2, 2006
Published: September 1, 2006

Citation
Xuezheng Sun, Peifu Gu, Mingyu Li, Xu Liu, Debing Wang, and Jinlong Zhang, "Tunable spatial demultiplexer based on the Fabry-Perot filter," Opt. Express 14, 8470-8475 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-18-8470


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger Ltd, 1986). [CrossRef]
  2. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis, (John Wiley & Sons, Inc., 1999). [CrossRef]
  3. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990). [CrossRef]
  4. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17,1012-1020, (2000). [CrossRef]
  5. H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998). [CrossRef]
  6. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002). [CrossRef]
  7. T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002). [CrossRef]
  8. K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002). [CrossRef]
  9. H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).
  10. X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).
  11. M. Gerken and D. A. B. Miller, "Multilayer thin film structures with high spatial dispersion," Appl. Opt. 42, 1330-1344 (2003). [CrossRef] [PubMed]
  12. M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003). [CrossRef]
  13. J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002). [CrossRef]
  14. K. Choi, H. Kim, Y. Lim, S. Kim and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8866-88742005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited