OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8578–8583

Recording different geometries of 2D hexagonal photonic crystals by choosing the phase between two-beam interference exposures

J. W. Menezes, L. Cescato, E. J. de Carvalho, and E. S. Braga  »View Author Affiliations

Optics Express, Vol. 14, Issue 19, pp. 8578-8583 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



2D hexagonal patterns can be generated by the superimposition of two or three fringe patterns that have been formed by two-wave interference and that have rotations of 60° between them. Superimposing three exposures solves the problem of asymmetry in the cross section of structures, which is caused by double exposure. The resulting structure, however, depends on the phase shift of the third fringe pattern in relation to the previous two. We propose a method for controlling the phase shift, and we demonstrate that three different lattice geometries of hexagonal photonic crystals can be recorded when the phase is chosen.

© 2006 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(220.0220) Optical design and fabrication : Optical design and fabrication
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference

ToC Category:

Original Manuscript: July 19, 2006
Revised Manuscript: August 25, 2006
Manuscript Accepted: August 28, 2006
Published: September 18, 2006

J. W. Menezes, L. Cescato, E. J. de Carvalho, and E. S. Braga, "Recording different geometries of 2D hexagonal photonic crystals by choosing the phase between two-beam interference exposures," Opt. Express 14, 8578-8583 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. J. Brueck, "Optical and Interferometric Lithography Nanotechnology Enablers," Proc. IEEE 93, 1704 (2005). [CrossRef]
  2. A. Fernandez, J. Y. Decker, S. M. Herman, D. W. Phillion, D. W. Sweeney and M. D. Perry, "Methods for fabricating arrays of holes using interference lithography," J. Vac. Sci. Technol. B 15, 2439-2443 (1997). [CrossRef]
  3. L. Pang, W. Nakagawa and Y. Fainman, "Fabrication of two-dimensional photonic crystals with controlled defects by use of multiple exposures and direct write," Appl. Opt. 42, 5450-5456 (2003). [CrossRef] [PubMed]
  4. F. Quiñónez, J. W. Menezes, V. F. Rodriguez-Esquerre, H. Hernandez-Figueroa, R. D. Mansano and L. Cescato, "Band gap of hexagonal 2D photonic crystals with elliptical holes recorded by interference lithography," Opt. Express 14, 4873-4879 (2006) [CrossRef] [PubMed]
  5. M. Campbel, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef]
  6. D. N. Sharp, M. Campbell, E. R. Dedman, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Photonic crystals for the visible spectrum by holographic lithography," Opt. Quantum Electron. 34, 3-12 (2002). [CrossRef]
  7. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu and C. H. Lin, "Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique," Opt. Express 13, 9605-9611 (2005). [CrossRef] [PubMed]
  8. L. Cescato and J. Frejlich, Three-Dimensional Holographic Imaging (Wiley-Interscience Publication, 2002), Chap. 3.
  9. A. A. Talin, K. A. Dean and J. E. Jaskie, "Field emission displays: a critical review," Solid State Electron. 45, 963-976 (2001). [CrossRef]
  10. L. E. Gutierrez-Rivera, E. J. de Carvalho, M. A. Silva and L. Cescato, "Metallic submicrometer sieves fabricated by interferometric lithography and electroforming," J. Micromech. Microeng. 15, 1932-1937 (2005). [CrossRef]
  11. J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals (Princeton University Press, 1995).
  12. N. D. Lai, W. P. Liang, J. H. Lin and C. C. Hsu, "Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques," Opt. Express 13, 5331-5337 (2005). [CrossRef] [PubMed]
  13. C. A. Mack, "Development of positive photoresists," J. Electrochem. Soc. 134, 148-152 (1987). [CrossRef]
  14. B. A. Mello, I. F. Costa, C. R. A. Lima and L. Cescato, "Developed profile of holographically exposed photoresist gratings," Appl. Opt. 34, 597-601 (1995). [CrossRef]
  15. V. Berger, O. Gauthier-Lafaye and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60-64 (1997). [CrossRef]
  16. M. Breide, S. Johansson, L. E. Nilsson and H. Ahlèn, "Blazed Holographic Gratings", Opt. Acta 26, 1427-1441 (1979). [CrossRef]
  17. C. M. B. Cordeiro, A. A. Freschi, L. Li and L. Cescato, "Measurement of phase differences between the diffracted orders of deep relief gratings," Opt. Letters 28, 683-685 (2003). [CrossRef]
  18. A. A. Freschi, F. J. dos Santos, E. L. Rigon and L. Cescato, "Phase-locking of superimposed diffractive gratings in photoresists," Opt. Commun. 208, 41-49 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited