OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8613–8621

Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach

Lawrence P. Cunningham, Matthew P. Veilleux, and Paul J. Campagnola  »View Author Affiliations


Optics Express, Vol. 14, Issue 19, pp. 8613-8621 (2006)
http://dx.doi.org/10.1364/OE.14.008613


View Full Text Article

Enhanced HTML    Acrobat PDF (1063 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiphoton excited polymerization has attracted increasing attention as a powerful 3 dimensional nano/microfabrication tool. The nonlinear excitation confines the fabrication region to the focal volume allowing the potential to achieve freeform fabrication with submicron capabilities. We report the adaptation and use of a computer aided design (CAD) approach, based on rapid prototyping software, which exploits this potential for fabricating with protein and polymers in biologically compatible aqueous environments. 3D structures are drawn in the STL format creating a solid model that can be sliced, where the individual sections are then serially fabricated without overwriting previous layers. The method is shown for potential biological applications including microfluidics, cell entrapment, and tissue engineering

© 2006 Optical Society of America

OCIS Codes
(120.4610) Instrumentation, measurement, and metrology : Optical fabrication
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(350.3450) Other areas of optics : Laser-induced chemistry

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: April 28, 2006
Revised Manuscript: July 19, 2006
Manuscript Accepted: August 11, 2006
Published: September 18, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Lawrence P. Cunningham, Matthew P. Veilleux, and Paul J. Campagnola, "Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach," Opt. Express 14, 8613-8621 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8613


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002). [CrossRef]
  2. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002). [CrossRef] [PubMed]
  3. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  4. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  5. B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004). [CrossRef] [PubMed]
  6. J. H. Strickler and W. W. Webb, "Three-dimensional optical data storage in refractive media by two-photon point excitation," Opt. Lett. 16, 1780-1782 (1991). [CrossRef] [PubMed]
  7. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004). [CrossRef]
  8. F. J. Qi, Y. Li, H. C. Guo, H. Yang, and Q. H. Gong, "Wavy lines in two-photon photopolymerization microfabrication," Opt. Express 12, 4725-4730 (2004). [CrossRef] [PubMed]
  9. T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005). [CrossRef] [PubMed]
  10. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003). [CrossRef] [PubMed]
  11. J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006). [CrossRef] [PubMed]
  12. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004). [CrossRef] [PubMed]
  13. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006). [CrossRef] [PubMed]
  14. A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006). [CrossRef] [PubMed]
  15. S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004). [CrossRef] [PubMed]
  16. S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004). [CrossRef] [PubMed]
  17. S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004). [CrossRef]
  18. S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005). [CrossRef] [PubMed]
  19. G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006). [CrossRef]
  20. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000). [CrossRef]
  21. M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003). [CrossRef]
  22. S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005). [CrossRef]
  23. S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003). [CrossRef]
  24. J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997). [CrossRef] [PubMed]
  25. W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002). [CrossRef] [PubMed]
  26. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006). [PubMed]
  27. M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited