OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8694–8705

Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials

Bryan J. Justice, Jack J. Mock, Liheng Guo, Aloyse Degiron, David Schurig, and David R. Smith  »View Author Affiliations


Optics Express, Vol. 14, Issue 19, pp. 8694-8705 (2006)
http://dx.doi.org/10.1364/OE.14.008694


View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform an experimental study of the phase and amplitude of microwaves interacting with and scattered by two-dimensional negative index metamaterials. The measurements are performed in a parallel plate waveguide apparatus at X-band frequencies (8–12 GHz), thus constraining the electromagnetic fields to two dimensions. A detection antenna is fixed to one of the plates, while a second plate with a fixed source antenna or waveguide is translated relative to the first plate. The detection antenna is inserted into, but not protruding below, the stationary plate so that fields internal to the metamaterial samples can be mapped. From the measured mappings of the electric field, the interplay between the microstructure of the metamaterial lattice and the macroscopic averaged response is revealed. For example, the mapped phase fronts within a metamaterial having a negative refractive index are consistent with a macroscopic phase—in accordance with the effective medium predictions—which travels in a direction opposite to the direction of propagation. The field maps are in excellent agreement with finite element numerical simulations performed assuming homogeneous metamaterial structures.

© 2006 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics

ToC Category:
Metamaterials

History
Original Manuscript: July 21, 2006
Revised Manuscript: September 6, 2006
Manuscript Accepted: September 6, 2006
Published: September 18, 2006

Citation
Bryan J. Justice, Jack J. Mock, Liheng Guo, Aloyse Degiron, David Schurig, and David R. Smith, "Spatial mapping of the internal and external electromagnetic fields of negative index metamaterials," Opt. Express 14, 8694-8705 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8694


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Walser, "Electromagnetic metamaterials," in Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, I. J. Hodgkinson, eds., Proc. SPIE 4467, 1-15 (2001). [CrossRef]
  2. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004). [CrossRef] [PubMed]
  3. Z. G. Dong, S. N. Zhu, H. Liu, J. Zhu, and W. Cao, "Numerical simulations of negative-index refraction in wedge-shaped samples," Phys. Rev. E 72, 016607 (2005). [CrossRef]
  4. D. R. Smith, S. Schultz, P. Markoš and C. M Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002). [CrossRef]
  5. X. D. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004). [CrossRef]
  6. D. R. Smith and J. B. Pendry, "Homogenization of metamaterials by field averaging," J. Opt. Soc. Am. B 23, 391-403 (2006). [CrossRef]
  7. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective medium parameters of metamaterials," Phys. Rev. E 68, 065602 (2003). [CrossRef]
  8. T. Koschny, P. Markoš, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B 71, 245105 (2005). [CrossRef]
  9. D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  10. R. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  11. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell’s law," Phys. Rev. Lett. 90, 107401 (2002). [CrossRef]
  12. A. A. Houck, J. B. Brock and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell’s law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  13. R. W. Ziolkowski, "Design, fabrication and testing of double negative metamaterials," IEEE Trans. Antennas Propag. 51, 1516-1529 (2003). [CrossRef]
  14. R. B. Greegor, C. G. Parazzoli, K. Li, B. E. C. Koltenbah and M. Tanielian, "Experimental determination and numerical simulation of the properties of negative index of refraction metamaterials," Opt. Express 11, 688-695 (2003). [CrossRef] [PubMed]
  15. C. G. Parazzoli, R. B. Greegor, J. A. Nielsen, M. A. Thompson, K. Li, A. M. Vetter, M. H. Tanielian, and D. C. Vier, "Performance of a negative index of refraction lens," Appl. Phys. Lett. 84, 3232-3234 (2004). [CrossRef]
  16. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a graded negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  17. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  18. B. I. Popa and S. A. Cummer, "Wave fields measured inside a negative refractive index metamaterial," Appl. Phys. Lett. 85, 4564-4566 (2004). [CrossRef]
  19. B. I. Popa and S. A. Cummer, "Direct measurement of evanescent wave enhancement inside passive metamaterials," Phys. Rev. E 73, 016617 (2006). [CrossRef]
  20. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782 (2006). [CrossRef] [PubMed]
  21. U. Leonhardt, "Optical conformal mapping," Science 312, 1777-1780 (2006). [CrossRef] [PubMed]
  22. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Appl. Phys. Lett. 84, 2244-2246 (2004). [CrossRef]
  23. P. V. Parimi, W. T. Lu, P. Vodo, J. Sokoloff, J. S. Derov, and S. Sridhar, "Negative refraction and left-handed electromagnetism in microwave photonic crystals," Phys. Rev. Lett. 92, 127401 (2004). [CrossRef] [PubMed]
  24. P. Vodo, P. V. Parimi, W. T. Lu, and S. Sridhar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett. 86, 201108 (2005). [CrossRef]
  25. D. R. Smith, P. Kolinko, and D. Schurig, "Negative refraction in indefinite media," J. Opt. Soc. Am. B 21, 1032-1043 (2004). [CrossRef]
  26. C. P. Parazzoli and K. Li, Phantom Works, The Boeing Company (personal communication, 2005).
  27. V. G. Veselago "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USPEKI 10, 509-514 (1968). [CrossRef]
  28. J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, and J. J. Mock, "Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability," Phys. Rev. B 71, 195402 (2005). [CrossRef]
  29. P. Kolinko and D. R. Smith, "Numerical study of electromagnetic waves interacting with negative index materials," Opt. Express 11, 640-648 (2003). [CrossRef] [PubMed]
  30. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, "Enhanced diffraction from a grating on the surface of a negative-index metamaterial," Phys. Rev. Lett. 93, 137405 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1694 KB)     
» Media 2: AVI (1679 KB)     
» Media 3: AVI (1698 KB)     
» Media 4: AVI (1740 KB)     
» Media 5: AVI (835 KB)     
» Media 6: AVI (1572 KB)     
» Media 7: AVI (766 KB)     
» Media 8: AVI (1673 KB)     
» Media 9: AVI (874 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited