OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8716–8721

Distance and orientation measurement in the nanometric scale based on polarization anisotropy of metallic dimers

Hernán E. Grecco and Oscar E. Martínez  »View Author Affiliations


Optics Express, Vol. 14, Issue 19, pp. 8716-8721 (2006)
http://dx.doi.org/10.1364/OE.14.008716


View Full Text Article

Enhanced HTML    Acrobat PDF (90 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the orientation of a dimer and the distance between the nanoparticles that form it can be determined by measuring the scattering under polarized light illumination. Scattering microscopy has shown to be an alternative to fluorescence as it provides nonbleaching and highly biocompatible probes, that can be manufactured in different sizes with different ligands. We propose a method based on measuring the polarization anisotropy of metallic dimers to determine distances in the range from 10 nm to 200 nm, thus filling the gap between fluorescence resonance energy transfer (FRET) and conventional microscopy. By calculating the scattering cross section of metallic dimers we show that it is also possible to gather orientation information, relevant to understand many biological processes.

© 2006 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(290.4020) Scattering : Mie theory

ToC Category:
Microscopy

History
Original Manuscript: July 14, 2006
Revised Manuscript: August 29, 2006
Manuscript Accepted: August 30, 2006
Published: September 18, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Hernán E. Grecco and Oscar E. Martínez, "Distance and orientation measurement in the nanometric scale based on polarization anisotropy of metallic dimers," Opt. Express 14, 8716-8721 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Kam, T. Volberg, and B. Geiger, "Mapping of Adherens Junction Components using Microscopic Resonance Energy-Transfer Imaging," J. Cell. Sci. 108, 1051-1062 (1995). [PubMed]
  2. Y. Suzuki, T. Yasunaga, R. Ohkura, T. Wakabayashi, and K. Sutoh, "Swing of the lever arm of a myosin motor at the isomerization and phosphate-release steps," Nature 396, 380-383 (1998). [CrossRef] [PubMed]
  3. N. P. Mahajan, K. Linder, G. Berry, G. W. Gordon, R. Heim, and B. Herman, "Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer," Nat. Biotechnol. 16, 547-552 (1998). [CrossRef] [PubMed]
  4. E. A. Jares-Erijman, and T. M. Jovin, "FRET imaging," Nat. Biotechnol. 21, 1387-1395 (2003). [CrossRef] [PubMed]
  5. H. E. Grecco, K. A. Lidke, R. Heintzmann, D. S. Lidke, C. Spagnuolo, O. E. Martinez, E. A. Jares-Erijman, and T. M. Jovin, "Ensemble and single particle photophysical properties (Two-Photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells," Microsc. Res. Tech. 65, 169-179 (2004). [CrossRef]
  6. D. S. Lidke, P. Nagy, R. Heintzmann, J. N. Post, D. J. Arndt-Jovin, H. Grecco, E. A. Jares-Erijman, and T. M. Jovin, "Real-time visualization of transmembrane receptor tyrosine kinase (erbB) dynamics using quantum dot ligands," Biophys. J. 86, 446A-446A (2004).
  7. K. Suzuki, K. Ritchie, E. Kajikawa, T. Fujiwara, and A. Kusumi, "Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques," Biophysical Journal 88, 3659-3680 (2005). [CrossRef] [PubMed]
  8. J. H. Bruning, and Y. T. Lo, "Multiple Scattering of EM Waves By Spheres.1. Multipole Expansion and Ray-Optical Solutions," IEEE Trans. Antennas Propag. AP19, 378-390 (1971). [CrossRef]
  9. J. H. Bruning, and Y. T. Lo, "Multiple Scattering of EM Waves By Spheres. 2. Numerical and Experimental Results," IEEE Trans. Antennas Propag. AP19, 391-400 (1971). [CrossRef]
  10. K. A. Fuller, "Optical Resonances and 2-Sphere Systems," Appl. Opt. 30, 4716-4731 (1991). [CrossRef] [PubMed]
  11. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005). [CrossRef] [PubMed]
  12. B. M. Reinhard, M. Siu, H. Agarwal, A. P. Alivisatos, and J. Liphardt, "Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles," Nano Lett. 5, 2246-2252 (2005). [CrossRef] [PubMed]
  13. A. B. Asenjo, N. Krohn, and H. Sosa, "Configuration of the two kinesin motor domains during ATP hydrolysis," Nat. Struct. Biol. 10, 836-842 (2003). [CrossRef] [PubMed]
  14. S. Syed, G. E. Snyder, C. Franzini-Armstrong, P. R. Selvin, and Y. E. Goldman, "Adaptability of myosin V studied by simultaneous detection of position and orientation," EMBO J. 25, 1795-1803 (2006). [CrossRef] [PubMed]
  15. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, "Defocused orientation and position imaging (DOPI) of myosin V," Proceedings of The National Academy of Sciences of The United States of America 103, 6495-6499 (2006). [CrossRef] [PubMed]
  16. D. W. Mackowski, "Analysis of Radiative Scattering for Multiple Sphere Configurations," Proceedings of The Royal Society of London Series A-Mathematical Physical And Engineering Sciences 433, 599-614 (1991). [CrossRef]
  17. Y. L. Xu, "Electromagnetic Scattering by an Aggregate of Spheres," Appl. Opt. 34, 4573-4588 (1995). [CrossRef] [PubMed]
  18. Y. L. Xu, "Electromagnetic scattering by an aggregate of spheres: far field," Appl. Opt. 36, 9496-9508 (1997). [CrossRef]
  19. C. F. Boheren and D. R Huffman, Absorption and scattering of light by small particles (Wiley, 1998).
  20. M. Bass, Handbook of Optics (McGraw Hill, 1995), Chap. 35.
  21. A. A. Oraevsky and A. N. Oraevsky, "On a plasmon resonance in ellipsoidal nanoparticles," Quantum Electron. 32, 79-82 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited