OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8797–8811

Single scatterer Fano resonances in solid core photonic band gap fibers

P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton  »View Author Affiliations


Optics Express, Vol. 14, Issue 19, pp. 8797-8811 (2006)
http://dx.doi.org/10.1364/OE.14.008797


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Solid core photonic bandgap fibers (SC-PBGFs) consisting of an array of high index cylinders in a low index background and a low index defect core have been treated as a cylindrical analog of the planar anti-resonant reflecting optical waveguide (ARROW). We consider a limiting case of this model in which the cylinders in the SC-PBGF cladding are widely spaced apart, so that the SC-PBGF modal loss characteristics should resemble the antiresonant scattering properties of a single cylinder. We find that for glancing incidence, the single cylinder scattering resonances are Fano resonances, and these Fano resonances do in fact appear in the loss spectra of SC-PBGFs. We apply our analysis to enhance the core design of SC-PBGFs, specifically with an eye towards improving the mode confinement in the fundamental bandgap.

© 2006 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(290.0290) Scattering : Scattering
(290.1350) Scattering : Backscattering

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: August 7, 2006
Manuscript Accepted: August 30, 2006
Published: September 18, 2006

Citation
P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, "Single scatterer Fano resonances in solid core photonic band gap fibers," Opt. Express 14, 8797-8811 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8797


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic bandgap fiber," in Optical Fiber Communications Conference, Post Conference Ed., Vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington, D. C., 2002), 466-468.
  2. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  3. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  4. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  5. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, "Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm," Opt. Express 13, 8452-8459 (2005). [CrossRef] [PubMed]
  6. J. M. Stone, G. J. Pearce, F. Luan, T. A. Birks, J. C. Knight, A. K. George, and D. M. Bird, "An improved photonic bandgap fiber based on an array of rings," Opt. Express 14, 6291-6295 (2006). [CrossRef] [PubMed]
  7. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic bandgap fibre designed for zero-dispersion propagation at short wavelengths," Electron. Lett. 36, 514-515 (2000). [CrossRef]
  8. J. Lægsgaard, "Gap formation and guided modes in photonic bandgap fibres with high-index rods," J. Opt. A, Pure Appl. Opt. 6, 798-804 (2004). [CrossRef]
  9. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, "Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  10. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1 592-1594 (2002). [CrossRef]
  11. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002). [PubMed]
  12. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  13. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  14. J. Kubica, D. Uttamchandani, and B. Culshaw, "Modal propagation within ARROWwaveguides," Opt. Commun. 78, 133-136 (1990). [CrossRef]
  15. T. Baba and Y. Kokubun, "Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides - numerical results and analytical expressions," IEEE J. Quantum Electron. 28,1689-1700 (1992). [CrossRef]
  16. A. C. Lind and J. M. Greenberg, "Electromagnetic scattering by obliquely Oriented Cylinders," J. Appl. Phys. 37, 3195-3203 (1966). [CrossRef]
  17. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005). [CrossRef] [PubMed]
  18. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  19. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006). [CrossRef] [PubMed]
  20. G. Renversez, P. Boyer, and A. Sagrini, "Antiresonant reflecting optical waveguide microstructured fibers revisited: a new analysis based on leaky mode coupling," Opt. Express 14, 5682-5687 (2006). [CrossRef] [PubMed]
  21. J. R. Wait, "Scattering of a plane wave from a circular dielectric cylinder at oblique incidence," Canadian J. Phys. 33, 189-195 (1955). [CrossRef]
  22. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998). [CrossRef]
  23. Note that we define ϑ0 such that it approaches zero for near glancing incidence, which we feel is the natural choice in the current context; in most of the literature on scattering by cylinders [16,21,22], however, the conicity angle approaches π=2 for glancing incidence, and our definition is equivalent to π=2¡α in the earlier references.
  24. A. W. Snyder and J.D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  25. E. Snitzer, "Cylindrical Dielectric Waveguide Modes," J. Opt. Soc. Am. 51, 491-498 (1961). [CrossRef]
  26. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  27. B. T. Kuhlmey, T. P. White, D. Maystre, G. Renversez, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  28. http://www.physics.usyd.edu.au/cudos/mofsoftware
  29. U. Fano, "Effects Of Configuration Interaction On Intensities And Phase Shifts," Phys. Rev. 124, 1866-1878 (1961). [CrossRef]
  30. R. V. Andaloro, H. J. Simon, and R. T. Deck, "Temporal pulse reshaping with surface waves," Appl. Opt. 33, 6340-6347 (1994). [CrossRef] [PubMed]
  31. S. Fan, and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  32. A. E. Miroshnichenko, S. F. Mingaleev, S. Flach, and Yu. S. Kivshar, "Nonlinear Fano resonance and bistable wave transmission," Phys. Rev. E 71, 036626 (2005). [CrossRef]
  33. E. Centeno and D. Felbacq, "Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals," J. Opt. Soc. Am. A 17, 320-327 (2000). [CrossRef]
  34. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, "Scaling laws and vector effects in bandgap-guiding fibers," Opt. Express 12, 69-74 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: GIF (1156 KB)     
» Media 2: GIF (949 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited