OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8885–8889

Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS

I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus  »View Author Affiliations


Optics Express, Vol. 14, Issue 19, pp. 8885-8889 (2006)
http://dx.doi.org/10.1364/OE.14.008885


View Full Text Article

Enhanced HTML    Acrobat PDF (384 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the remote characterization and dispersion compensation (pulse compression) of femtosecond pluses using multiphoton intrapulse interference phase scan (MIIPS). The results presented here were carried out at a distance of 28.9 m from the target. The method could be used with targets placed kilometers away. The amplified pulses arrive at the remote target within one percent of transform limit or accurately phase-shaped by user defined phase functions. From our experiment we measure the group velocity dispersion of air at 800 nm to be 20.1±1.5 fs2/m, which is in good agreement with published values. We consider this method for remote characterization and dispersion compensation to be an important step towards the development of reliable applications requiring the propagation of ultrashort pulses to remote targets.

© 2006 Optical Society of America

OCIS Codes
(320.5540) Ultrafast optics : Pulse shaping
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 15, 2006
Revised Manuscript: August 10, 2006
Manuscript Accepted: August 20, 2006
Published: September 18, 2006

Citation
I. Pastirk, X. Zhu, R. M. Martin, and M. Dantus, "Remote characterization and dispersion compensation of amplified shaped femtosecond pulses using MIIPS," Opt. Express 14, 8885-8889 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-19-8885


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Kasparian, M. Rodriguez, G. Mejean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003). [CrossRef] [PubMed]
  2. G. Mejean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, "Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system," Appl. Phys. B: Lasers Opt. 78, 535-537 (2004). [CrossRef]
  3. J. F. Gravel, Q. Luo, D. Boudreau, X. P. Tang, and S. L. Chin, "Sensing of halocarbons using femtosecond laser-induced fluorescence," Anal. Chem. 76, 4799-4805 (2004). [CrossRef] [PubMed]
  4. P. Rohwetter, J. Yu, G. Mejean, K. Stelmaszczyk, E. Salmon, J. Kasparian, J. P. Wole, and L. Woste, "Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes," J. Anal. At. Spectrom. 19, 437-444 (2004). [CrossRef]
  5. H. L. Xu, J. F. Daigle, Q. Luo, and S. L. Chin, "Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane," Appl. Phys.B: Lasers Opt. 82, 655-658 (2006). [CrossRef]
  6. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, and M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002). [CrossRef]
  7. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, and M. Dantus, "Multiphoton intrapulse interference. II. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003). [CrossRef]
  8. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, "Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating," Rev. Sci. Instrum. 68, 3277-3295 (1997). [CrossRef]
  9. C. Iaconis, and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792-794 (1998). [CrossRef]
  10. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004). [CrossRef] [PubMed]
  11. B. W. Xu, J. M. Gunn, J. M. Dela Cruz, V. V. Lozovoy, and M. Dantus, "Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses," J. Opt. Soc. Am. B 23, 750-759 (2006). [CrossRef]
  12. R. D. Nelson, D. E. Leaird, and A. M. Weiner, "Programmable polarization-independent spectral phase compensation and pulse shaping," Opt. Express 11, 1763-1769 (2003). [CrossRef] [PubMed]
  13. T. A. Pitts, T. S. Luk, J. K. Gruetzner, T. R. Nelson, A. McPherson, S. M. Cameron, and A. C. Bernstein, "Propagation of self-focusing laser pulses in atmosphere: experiment versus numerical simulation," J. Opt. Soc. Am. B 21, 2008-2016 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited