OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 19 — Sep. 18, 2006
  • pp: 8890–8899

Unambiguous chirp characterization using modified-spectrum auto-interferometric correlation and pulse spectrum

B. Yellampalle, R. D. Averitt, and A. J. Taylor  »View Author Affiliations

Optics Express, Vol. 14, Issue 19, pp. 8890-8899 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (135 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modified-spectrum auto-interferometric correlation (MOSAIC), derived from a conventional second order interferometric autocorrelation trace, is a sensitive and visual chirp diagnostic method for ultrashort laser pulses. We construct several pairs of example pulse shapes that have nearly identical MOSAIC traces and demonstrate that chirp ambiguity can result when the field amplitude or spectrum are not known, thus making MOSAIC a qualitative tool for chirped pulses. However, when the pulse spectrum is known, a unique chirp reconstruction is possible. With the help of a new reconstruction technique, we experimentally demonstrate complete pulse characterization using MOSAIC envelopes and the pulse spectrum.

© 2006 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(320.7100) Ultrafast optics : Ultrafast measurements

ToC Category:
Ultrafast Optics

Original Manuscript: June 30, 2006
Revised Manuscript: August 28, 2006
Manuscript Accepted: September 1, 2006
Published: September 18, 2006

B. Yellampalle, R. D. Averitt, and A. J. Taylor, "Unambiguous chirp characterization using modified-spectrum auto-interferometric correlation and pulse spectrum," Opt. Express 14, 8890-8899 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Appl. Opt. 24, 1270 - 82 (1985). [CrossRef] [PubMed]
  2. C. Yan and J. C. Diels, "Amplitude and phase recording of ultrashort pulses," J. Opt. Soc. Am. B 8, 1259 - 1263 (1991). [CrossRef]
  3. C. Spielmann, L. Xu, and F. Krausz, "Measurement of interferometric autocorrelations: comment," Appl. Opt. 36, 2523 - 2525 (1997). [CrossRef] [PubMed]
  4. T. Hirayama and M. Sheik-Bahae, "Real-time chirp diagnostic for ultrashort laser pulses," Opt. Lett. 27, 860 -862 (2002). [CrossRef]
  5. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571 - 579 (1993). [CrossRef]
  6. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932 - 934 (2001). [CrossRef]
  7. G. Stibenz and G. Steinmeyer, "Interferometric frequency-resolved optical gating," Opt. Express 13, 2617 - 2626 (2005). [CrossRef] [PubMed]
  8. C. Iaconis and I. A. Walmsley, "Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses," Opt. Lett. 23, 792 - 794 (1998). [CrossRef]
  9. J. K. Rhee, T. S. Sosnowski, A. C. Tien, and T. B. Norris, "Real-time dispersion analyzer of femtosecond laser pulses with use of a spectrally and temporally resolved upconversion technique," J. Opt. Soc. Am. B 13, 1780 - 1785 (1996). [CrossRef]
  10. J. W. Nicholson, J. Jasapara, W. Rudolph, F. G. Omenetto, and A. J. Taylor, "Full-field characterization of femtosecond pulses by spectrum and cross-correlation measurements," Opt. Lett. 24, 1774 - 1776 (1999). [CrossRef]
  11. R. G. M. P. Koumans and A. Yariv, "Time-resolved optical gating based on dispersive propagation: a new method to characterize optical pulses," IEEE J. Quantum Electron. 36, 137 - 144 (2000). [CrossRef]
  12. A. K. Sharma, P. A. Naik, and P. D. Gupta, "Estimation of higher order chirp in ultrashort laser pulses using modified spectrum auto-interferometric correlation," Opt. Commun. 233, 431 - 437 (2004). [CrossRef]
  13. A. K. Sharma, M. Raghuramaiah, P. A. Naik, and P. D. Gupta, "Use of commercial grade light emitting diode in auto-correlation measurements of femtosecond and picosecond laser pulses at 1054 nm," Opt. Commun. 246, 195 - 204 (2005). [CrossRef]
  14. D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, "Sensitive ultrashort pulse chirp measurement," Opt. Lett. 31, 122 - 124 (2006). [CrossRef] [PubMed]
  15. K. Naganuma, K. Modi, and H. Yamada, "General method for ultrashort light pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225 - 1233 (1989). [CrossRef]
  16. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237 - 246 (1972).
  17. W. Press, B. Flannery, S. Teukosky, andW. Vetterling, Numerical Recepies in C - The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).
  18. For a 64 element matrix, the phase reconstruction required six seconds of computation in IDL on a Pentium M 1.6 GHz processor.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited