OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 518–526

Adaptive optics for ophthalmic applications using a pyramid wavefront sensor

Stéphane R. Chamot, Chris Dainty, and Simone Esposito  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 518-526 (2006)
http://dx.doi.org/10.1364/OPEX.14.000518


View Full Text Article

Enhanced HTML    Acrobat PDF (184 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new adaptive optics system for the eye using a pyramid wavefront sensor interfaced in closed-loop with a piezoelectric deformable mirror is presented. Sensing parameters such as CCD integration time, pupil sampling and beam steering amplitude are tested on the bench and in vivo on several volunteers to optimize real-time optical correction. The system allows closed-loop operation at a frame rate of 55 Hz and reduces ocular aberration up to λ/5 residual RMS over a 6 mm pupil. Aberration correction and mirror control stability clearly increase when smaller beam steering amplitudes synonymous of higher wavefront sensing sensitivity are used. This result suggests that using pyramid wavefront sensors can improve the performance of adaptive-optics system for ophthalmic applications.

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Adaptive Optics

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Stéphane R. Chamot, Chris Dainty, and Simone Esposito, "Adaptive optics for ophthalmic applications using a pyramid wavefront sensor," Opt. Express 14, 518-526 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-518


Sort:  Journal  |  Reset  

References

  1. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal Vision and High-Resolution Retinal Imaging Through Adaptive Optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  2. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-Loop Adaptive Optics in the Human Eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  3. A. Roorda, F. Romero-Borja, W. J. I. Donnelly, H. Quenner, T. J. Hebert, and M. C. Campbell, "Adaptive Optics Scanning Laser Ophthalmosopy," Opt. Express 10, 405-412 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-405</a>. [PubMed]
  4. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. L. Gargasson, and P. Lena, "Towards Wide-Field Retinal Imaging With Adaptive Optics," Opt. Commun. 230, 225-228 (2004). [CrossRef]
  5. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-Optics Ultrahigh-Resolution Optical Coherence Tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  6. Y. Zhang, J. Rha, R. S. Jonnal, D. T. Miller, "Adaptive Optics Parallel Spectral Domain Optical Coherence Tomography for Imaging the Living Retina," Opt. Express 13, 4792-4811 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4792</a>. [CrossRef] [PubMed]
  7. B. Platt and R. V. Shack, "Lenticular Hartmann Screen," Opt. Sci. Center Newsl. (University of Arizona) 5, 15-16 (1971).
  8. R. Ragazzoni, "Pupil Plane Wavefront Sensing With an Oscillating Prism," J. Mod. Opt. 43, 289-293 (1996). [CrossRef]
  9. A. Ghedina, M. Cecconi, R. Ragazzoni, J. Farinato, A. Baruffolo, G. Crimi, E. Diolaiti, S. Esposito, L. Fini, M. Ghigo, E. Marchetti, T. Niero, and A. Puglisi, "On Sky Test of the Pyramid Wavefront Sensor," in Adaptive Optical System II, P. L.Wizinowich and D. Bonaccini, eds., Proc. SPIE 4839, 869-877 (2003). [CrossRef]
  10. R. Ragazzoni and J. Farinato, "Sensitivity of a Pyramidic Wave Front Sensor in Closed Loop Adaptive Optics," Astron. Astrophys. 350, L23-L26 (1999).
  11. S. Esposito and A. Riccardi, "Pyramid Wavefront Sensor Behavior in Partial Correction Adaptive Optics Systems," Astron. Astrophys. 369, L9-L12 (2001). [CrossRef]
  12. I. Iglesias, R. Ragazzoni, Y. Julien, and P. Artal, "Extended Source Pyramid Wave-Front Sensor for the Human Eye," Opt. Express 10, 419-428 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-9-419</a>. [PubMed]
  13. P. Artal, S. Marcos, R. Navarro, and D. R.Williams, "Odd Aberrations and Double-Pass Measurements of Retinal Image Quality," J. Opt. Soc. Am. A 12, 195-201 (1995). [CrossRef]
  14. European Standard / EN60825-1:1993/A2:2001, European Committee for Electrotechnical Standardization (2001).
  15. E. Dalimier and J. C. Dainty, "Comparative Analysis of Deformable Mirrors for Ocular Adaptive Optics," Opt. Express 13, 4275-4285 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-4275</a>. [CrossRef] [PubMed]
  16. P. M. Prieto, E. J. Fernandez, S. Manzanera, and P. Artal, "Adaptive Optics With a Programmable Phase Modulator: Applications in the Human Eye," Opt. Express 12, 4059-4071 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4059</a>. [CrossRef] [PubMed]
  17. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, and D. R. Williams, "Improvement in Retinal Image Quality With Dynamic Correction of the Eyes Aberration," Opt. Express 8, 631-643 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-11-631</a>. [CrossRef] [PubMed]
  18. L. N. Thibos, A. Bradley, and X. Hong, "A Statistical Model of the Aberration Structure of Normal, Well-Corrected Eyes," Ophthal. Phys. Opt. 22, 427-433 (2002). [CrossRef]
  19. W. S. Stiles and B. H. Crawford, "The Luminous Efficiency of Rays Entering the Eye Pupil at Different Points," Proc. R. Soc. Lond. B 112, 428-450 (1933). [CrossRef]
  20. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and J. C. Dainty, "Benefits of Higher Closed-Loop Bandwidths in Ocular Adaptive Optics," Opt. Express 11, 2597-2605 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597</a>. [CrossRef] [PubMed]
  21. T. Nirmaier, C. A. Diez, and J. F. Bille, "High Speed CMOS Wavefront Sensor With Resisting Ring Networks of Winner-Take-All Circuits," IEEE Journal of Solid-State Circuits 40, 2315-2322 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited