OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 655–663

Dispersion-free absolute interferometry based on angular spectrum scanning

Zhihui Duan, Yoko Miyamoto, and Mitsuo Takeda  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 655-663 (2006)
http://dx.doi.org/10.1364/OPEX.14.000655


View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As an alternative to the conventional optical frequency scanning technique, an angular spectrum scanning technique is proposed for absolute interferometry. Instead of sweeping the optical frequency over a wide range of spectrum, we sweep the angular spectrum by changing the incident angle of a monochromatic plane wave with a spatial light modulator (SLM). The use of monochromatic light combined with the SLM enables dispersion-free absolute interferometry that is free from mechanical moving components.

© 2006 Optical Society of America

OCIS Codes
(120.2650) Instrumentation, measurement, and metrology : Fringe analysis
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:
Instrumentation, Measurement, and Metrology

Citation
Zhihui Duan, Yoko Miyamoto, and Mitsuo Takeda, "Dispersion-free absolute interferometry based on angular spectrum scanning," Opt. Express 14, 655-663 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-655


Sort:  Journal  |  Reset  

References

  1. P. A. Flournoy, R. W. McClure, and G. Wyntjes, "White-light interferometric thickness gauge," Appl. Opt. 11, 1907-1915 (1972,9). [CrossRef] [PubMed]
  2. N. Tanaka, M. Takeda, and K. Matsumoto, "Interferometrically measuring the physical properties of test object," United States Patent 4,072,422 (filed October 20 1976, issued Februay 7, 1978).
  3. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, "An application of interference microscopy to integrated circuit inspection and metrology," in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE 775, 233-247 (1987).
  4. B. S. Lee and T. C. Strand, "Profilometry with a coherence scanning microscope," Appl. Opt. 29, 3784-3788 (1990). [CrossRef] [PubMed]
  5. T. Dresel, G. Hausler, and H. Venzke, "Three-dimensional sensing of rough surfaces by coherence radar," Appl. Opt. 31, 919-925 (1992). [CrossRef] [PubMed]
  6. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  7. J. Ch. Vienot, R. Ferriere, and J. P. Goedgebur, "Conjugation of space and time variables in optics," in No. 65 of AIP Conference Proceedings of Optics in Four Dimensions, M. A. Machado and L. M. Narducci, eds. (American Institute of Physics, New York, 1981), pp.49-62.
  8. J. Schwider and L. Zhou, "Dispersive interferometric profilometer," Opt. Lett. 19, 995-997 (1994). [CrossRef] [PubMed]
  9. M. Takeda and H. Yamamoto, "Fourier-transform speckle profilometry: Three-dimensional shape measurements of diffuse objects with large height steps and /or spatially isolated surfaces," Appl. Opt. 33, 7829-7837 (1994). [CrossRef] [PubMed]
  10. S. Kuwamura and I. Yamaguchi, "Wavelength scanning profilometry for real-time surface shape measurement," Appl. Opt. 36, 4473-4482 (1997). [CrossRef] [PubMed]
  11. H. J. Tiziani, B. Franze, and P. Haible, "Wavelength-shift speckle interferometry for absolute profilometry using mode-hope free external cavity diode laser," J. Mod. Opt. 44, 1485-1496 (1997). [CrossRef]
  12. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, and T. Kurokawa, "Optical frequency-domain microprofilometry with a frequency-tunable liquid-crystal Fabry-Perot etalon device," Appl. Opt. 38, 7063- 7068 (1999). [CrossRef]
  13. D. S. Mehta, M. Sugai, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, and T. Yoshizawa, "Simultaneous three-dimensional step-height measurement and high-resolution tomographic imaging with a spectral interferometric microscope," Appl. Opt. 41, 3874-3885 (2002). [CrossRef] [PubMed]
  14. D. S. Mehta, H. Hinosugi, S. Saito, M. Takeda, T. Kurokawa, H. Takahashi, M. Ando, M. Shishido, T. Yoshizawa, "Spectral interferometric microscope with tandem liquid-crystal Fabry-Perot interferometers for extension of the dynamic range in three-dimensional step-height measurement," Appl. Opt. 42, 682-690 (2003). [CrossRef] [PubMed]
  15. M. Kuechel, "Apparatus and method(s) for reducing the effects of coherent artifacts in an interferometry," US Patent 6804011 B2, (2004) or US Patent Application 2003/0030819 A1, (2003).
  16. M. Kuechel, "Spatial coherence in interferometry," presented at the June 2004 Optatec conference, Germany, 2004.
  17. M. Takeda, H. Ina, and S. Kobyashi, "Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156-160 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited