OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 800–809

Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization

Florian Formanek, Nobuyuki Takeyasu, Takuo Tanaka, Kenta Chiyoda, Atsushi Ishikawa, and Satoshi Kawata  »View Author Affiliations

Optics Express, Vol. 14, Issue 2, pp. 800-809 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2045 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An experimental protocol for the realization of three-dimensional periodic metallic micro/nanostructures over large areas is presented. Simultaneous fabrication of hundreds of three-dimensional complex polymer structures is achieved using a two-photon photopolymerization (TPP) technique combined with a microlens array. Metallization of the structures is performed through the deposition of thin and highly conductive films by electroless plating. A chemical modification of the photopolymerizable resin and the production of a hydrophobic coating on the glass surface supporting the structures are realized. This process prevents metal deposition on the substrate and restricts adhesion on polymer. Our technique can produce periodic and/or isolated metallic structures with arbitrary shape, created by more than 700 individual objects written in parallel.

© 2006 Optical Society of America

OCIS Codes
(160.5470) Materials : Polymers
(190.4180) Nonlinear optics : Multiphoton processes
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.4000) Optical devices : Microstructure fabrication
(310.1620) Thin films : Interference coatings

ToC Category:
Optical Design and Fabrication

Florian Formanek, Nobuyuki Takeyasu, Takuo Tanaka, Kenta Chiyoda, Atsushi Ishikawa, and Satoshi Kawata, "Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization," Opt. Express 14, 800-809 (2006)

Sort:  Journal  |  Reset  


  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  2. B. H. Cumpston, S P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D.McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, "Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication," Nature (London) 398, 51-54 (1999). [CrossRef]
  3. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002). [CrossRef] [PubMed]
  4. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Finer features for functional microdevices," Nature (London) 412, 697-698 (2001). [CrossRef] [PubMed]
  5. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003). [CrossRef] [PubMed]
  6. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005). [CrossRef]
  7. W. H. Teh, U. Dürig, U. Drechsler, C. G. Smith, and H.-J. Güntherodt, "Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography," J. Appl. Phys. 97, 054907 (2005). [CrossRef]
  8. K. Takada, H.-B. Sun, and S. Kawata, "Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting," Appl. Phys. Lett. 86, 071122 (2005). [CrossRef]
  9. K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, "Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix," Appl. Phys. Lett. 83, 1426-1428 (2003). [CrossRef]
  10. T. Baldacchini, A.-C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1275.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-4-1275.</a> [CrossRef] [PubMed]
  11. P.-W.Wu,W. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, "Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix," Adv. Mater. 12, 1438-1441 (2000). [CrossRef]
  12. F. Stellacci, C. A. Bauer, T.Meyer-Friedrichsen, W.Wenseleers, V. Alain, S. M. Kuebler, S. J. K. Pond, Y. Zhang, S. R. Marder, and J. W. Perry, "Laser and electron-beam induced growth of nanoparticles for 2D and 3D metal patterning," Adv. Mater. 14, 194-198 (2002). [CrossRef]
  13. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005). [CrossRef]
  14. J.-I. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, "Multiple-spot parallel processing for laser micronanofabrication," Appl. Phys. Lett. 86, 044102 (2005). [CrossRef]
  15. L. P. Lee and R. Szema, "Inspirations from biological optics for advanced photonic systems," Science 310, 1148-1150 (2005). [CrossRef] [PubMed]
  16. G. O. Mallory and J. B. Hajdu, Electroless plating: fundamentals and applications (American Electroplaters and Surface Finishers Society, Orlando, FL, 1990).
  17. A. A. Antipov, G. B. Sukhorukov, Y. A. Fedutik, J. Hartmann, M. Giersig, and H. Mohwald, "Fabrication of a novel type of metallized colloids and hollow capsules," Langnuir 18, 6687-6693 (2002). [CrossRef]
  18. N. Takeyasu, T. Tanaka, and S. Kawata, "Metal deposition deep into microstructure by electroless plating," Jap. J. Appl. Phys. 44, 1134-1137 (2005). [CrossRef]
  19. L. J. Gerenser, "Photoemission investigation of silver/poly(ethylene terephthalate) interfacial chemistry: The effect of oxygen-plasma treatment," J. Vac. Sci. Technol. A 8, 3682-3691 (1990). [CrossRef]
  20. J. E. Gray, P. R. Norton and K. Griffiths, "Mechanism of adhesion of electroless-deposited silver on poly(ether urethane)," Thin Solid Films 484, 196-207 (2005). [CrossRef]
  21. F. Guan, M. Chen, W. Yang, J. Wang, S. Yong, and Q. Xue, "Fabrication of patterned gold microstructure by selective electroless plating," Appl. Surf. Sci. 240, 24-27 (2005). [CrossRef]
  22. S. Hrapovic, Y. Liu, G. Enright, F. Bensebaa, and J. H. T. Luong, "New strategy for preparing thin gold films on modified glass surfaces by electroless deposition," Langmuir 19, 3958-3965 (2003). [CrossRef]
  23. H. P. Herzig, Micro-optics (Taylor & Francis, London, 1997).
  24. Ph. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck , "Design, fabrication and testing of microlens arrays for sensors and microsystems," Pure Appl. Opt. 6, 617-636 (1997). [CrossRef]
  25. Y. Kobayashi, V. Salgueiriño-Maceira, and L. M. Liz-Marzán, "Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating," Chem. Mater. 13, 1630-1633 (2001). [CrossRef]
  26. Y. Saito, J. J. Wang, D. N. Batchelder, and D. A. Smith, "Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments," Langmuir 19, 6857-6861 (2003). [CrossRef]
  27. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305, 788-792 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited