OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 817–831

Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator

Thomas J. Johnson, Matthew Borselli, and Oskar Painter  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 817-831 (2006)
http://dx.doi.org/10.1364/OPEX.14.000817


View Full Text Article

Acrobat PDF (1811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Direct time-domain observations are reported of a low-power, self-induced modulation of the transmitted optical power through a high-Q silicon microdisk resonator. Above a threshold input power of 60 µW the transmission versus wavelength deviates from a simple optical bistability behavior, and the transmission intensity becomes highly oscillatory in nature. The transmission oscillations are seen to consist of a train of sharp transmission dips of width approximately 100 ns and period close to 1 µs. A model of the system is developed incorporating thermal and free-carrier dynamics, and is compared to the observed behavior. Good agreement is found, and the self-induced optical modulation is attributed to a nonlinear interaction between competing free-carrier and phonon populations within the microdisk.

© 2006 Optical Society of America

OCIS Codes
(190.4870) Nonlinear optics : Photothermal effects
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Citation
Thomas J. Johnson, Matthew Borselli, and Oskar Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-817


Sort:  Journal  |  Reset

References

  1. R. A. Soref and J. P. Lorenzo, "All-Silicon Active and Passive Guided-Wave Components for ?=1.3 and 1.6µm," IEEE J. Quantum Electron. 22, 873-879 (1986). [CrossRef]
  2. P. E. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and a fiber taper," Opt. Express 13, 801-820 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-3-801</a>. [CrossRef]
  3. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching action of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678-2687 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-7-2678</a>. [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic-crystal nanocavities," Appl. Phys. Lett. 87, 151112-1-151112-3 (2005). [CrossRef]
  5. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30, 2891-2893 (2005). [CrossRef]
  6. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef]
  7. M. Borselli, T. J. Johnson, and O. Painter, "Nonlinear Optics in High-Q SOI Optical Microcavities," In Integrated Photonics Research and Applications/Nanophotonics for Information Systems Topical Meetings on CD-ROM, (OSA, Washington, DC, 2005).
  8. T. J. Johnson, M. Borselli, and O. Painter, "Self-generated optical modulation in a high-Q SOI microdisk resonator," In Frontiers in Optics 2005/Laser Science XXI, (OSA, Washington, DC, 2005).
  9. G. Priem, P. Dumon, W. Bogaerts, D. V. Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9623">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-23-9623</a>. [CrossRef]
  10. S. L. McCall, "Instability and regenerative pulsation phenomena in Fabry-Perot nonlinear optic media devices," Appl. Phys. Lett. 32, 284-286 (1978). [CrossRef]
  11. H. M. Gibbs, J. L. Jewell, J. V. Moloney, K. Tai, S. Tarng, D. A. Weinberger, A. C. Gossard, S. L. McCall, A. Passner, and W. Weigmann, "Optical Bistability, Regenerative Pulsations, and Transverse Effects in Room-Temperature GaAs-AlGaAs Superlattice etalons," J. Phys. (Paris) 44, 195-204 (1983).
  12. J. L. Jewell, H. M. Gibbs, S. S. Tarng, A. C. Gossard, and W. Weigmann, "Regenerative pulsations from an intrinsic bistable device," Appl. Phys. Lett. 40, 291-293 (1982). [CrossRef]
  13. R. K. Jain and D. G. Steel, "Degenerate four-wave mixing of 10.6µm radiation in Hg1-xCdxTe," Appl. Phys. Lett. 37, 1-3 (1980). [CrossRef]
  14. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, "Nonstationary nonlinear effects in optical microspheres," J. Opt. Soc. Am. B 22, 459-465 (2005). [CrossRef]
  15. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13, 1515-1530 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1515">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-5-1515</a>. [CrossRef]
  16. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, "Optical-fiber-based measurement of an ultrasmall volume, high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306(R) (2004). [CrossRef]
  17. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisks," Appl. Phys. Lett. 85, 3693-3695 (2004). [CrossRef]
  18. M. Gorodetsky and V. Ilchenko, "Thermal Nonlinear Effects in Optical Whispering Gallery Microresonators," Laser Phys. 2, 1004-1009 (1992).
  19. D. Weiss, V. Sandoghdar, J. Hare, V. Lef´evre-Seguin, J. Raimond, and S. Haroche, "Splitting of high-Q Mie modes induced light backscattering in silica microspheres," Opt. Lett. 22, 1835-1837 (1995).
  20. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Modal coupling in traveling-wave resonators," Opt. Lett. 27, 1669-1671 (2002).
  21. M. Gorodetsky, A. Pryamikov, and V. Ilchenko, "Rayleigh scattering in high-Q microspheres," J. Opt. Soc. Am. B 17, 1051-1057 (2000).
  22. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Opt. Express 12, 4742-4750 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-20-4742</a>. [CrossRef]
  23. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef]
  24. H. M. Gibbs, Optical Bistability:Controlling Light with Light (Academic Press, San Diego, CA, 1985).
  25. G. Cocorullo and I.Rendina, "Thermo-optical modulation at 1.5µm in silicon etalon," Electron. Lett. 28, 83-85 (1992). [CrossRef]
  26. K. J. Vahala, "Optical Microcavities," Nature (London) 424, 839-846 (2003). [CrossRef]
  27. Here we assume that the coupling to each of the standing-wave modes is identical. In general, the coupling can be different, although experimentally we have noticed only small differences in coupling.
  28. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in silicon waveguides," Opt. Express 12, 2774-2780 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-12-2774</a>. [CrossRef]
  29. Note that the confinement factor and effective mode volume for the two standing-wave modes are identical, hence we drop the c/s subscript.
  30. For TPA with the standing wave modes one has an additional term dependent upon the product UcUs, with cross-confinement factor ? c/s,TPA and cross-mode volume 3Vc/s,TPA pre-factors. For FCA, described below, one cannot write the total absorption just in terms of products of powers of the cavity energies, but rather the mode amplitudes themselves must be explicitly used.
  31. R. A. Soref and B. R. Bennett, "Electrooptical Effects in Silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  32. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for Maxwell's equations with shifting material boundaries," Phys. Rev. E 65, 066611 (2002). [CrossRef]
  33. A variable order Adams-Bashforth-Moulton predictor-corrector method was used.
  34. Handbook of optical constants of solids, E. Palick, ed., (Academic Press, Boston, MA, 1985).
  35. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003). [CrossRef]
  36. D. K. Schroder, R. N. Thomas, and J. C. Swartz, "Free Carrier Absorption in Silicon," IEEE Trans. Electron. Dev. 25, 254-261 (1978).
  37. S. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons, New York, New York, 1981).
  38. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed. (Springer-Verlag New York, New York, NY, 2003).
  39. K. Aubin, M. Zalalutdinov, T. Alan, R. Reichenbach, R. Rand, A. Zehnder, J. Parpia, and H. Craighead, "Limit Cycle Oscillations in CW Laser Driven NEMS," J. Microelectromec. Syst. 13, 1018-1026 (2004).
  40. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, "Micrometre-scale silicon electro-optic modulator," Nature 435, 325-327 (2005). [CrossRef]
  41. Luxtera, <a href="http://www.luxtera.com/news press.htm#081505">http://www.luxtera.com/news press.htm#081505</a>.
  42. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef]
  43. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef]
  44. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef]
  45. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Materials 4, 207-210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited