OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 879–886

Image transfer by cascaded stack of photonic crystal and air layers

C. Shen, K. Michielsen, and H. De Raedt  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 879-886 (2006)
http://dx.doi.org/10.1364/OPEX.14.000879


View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and the surface termination, the image can be transfered by the stack with very little deterioration of the resolution, that is the resolution of the final image is approximately the same as the resolution of the image formed behind one single photonic crystal slab.

© 2006 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(120.5710) Instrumentation, measurement, and metrology : Refraction
(220.3630) Optical design and fabrication : Lenses
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Photonic Crystals

Citation
C. Shen, K. Michielsen, and H. De Raedt, "Image transfer by cascaded stack of photonic crystal and air layers," Opt. Express 14, 879-886 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-879


Sort:  Journal  |  Reset  

References

  1. A. Bers, "Note on group velocity and energy propagation", Am. J. Phys. 68, 482 - 484 (2000). [CrossRef]
  2. J.B. Pendry and D.R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004). [CrossRef]
  3. S. Foteinopoulou, E.N. Economou, and C.M. Soukoulis, "Refraction in media with a negative refractive index," Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  4. J.B. Brock, A.A. Houck, and I.L. Chuang, "Focusing inside negative index materials," Appl. Phys. Lett. 85, 2472 - 2474 (2004). [CrossRef]
  5. V.G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and µ," Sov. Phys. Usp. 10, 509 - 514 (1968). [Translation from the original Russion version in Usp. Fiz. Nauk. 92, 517 - 526 (1967). This year was mislabeled in the translation as 1964.]. [CrossRef]
  6. R.W. Ziolkowski, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]
  7. R.W. Ziolkowski, "Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs," Opt. Express 11, 662 - 681 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-7-662</a>. [CrossRef] [PubMed]
  8. I.V. Lindell, S.A. Tretyakov, K.I. Nikoskinen, and S. Ilvonen, "BW media- media with negative parameters, capable of supporting backward waves," Microw. Opt. Tech. Lett. 31, 129 - 133 (2001). [CrossRef]
  9. I.V. Lindell and S. Ilvonen, "Waves in a slab of uniaxial BW medium," J. of Electromagn. Waves and Appl. 16, 303 - 318 (2002). [CrossRef]
  10. R.G.E. Hutter, Beam and wave electronics in microwave tubes, (Van Nostrand, Princeton, NJ, 1960), p.220.
  11. P.E. Mayes, G.A. Deschamps, and W.T. Patton, "Backward-wave radiation from periodic structures and application to the design of frequency-independent antennas," Proc. IRE 49, 962 - 963 (1961).
  12. J.L. Altman, Microwave circuits, (Van Nostrand, Princeton, NJ, 1964), chap.7, p.304.
  13. R.E. Collin, Foundations for vmicrowave engineering, (McGraw-Hill, New York, 1966).
  14. A.A. Oliner and T. Tamir, "Backward waves on isotropic plasma slabs," J. Appl. Phys. 33, 231 - 233 (1962). [CrossRef]
  15. H. Lamb, "On group-velocity," Proc. London Math. Soc. 1, 473 - 479(1904). [CrossRef]
  16. H.C. Pocklington, "Growth of a wave-group when the group-velocity is negative," Nature 71, 607 - 608 (1905). [CrossRef]
  17. R.A. Silin, "Possibility of creating plane-parallel lenses," Opt. Spectrosc. (USSR) 44, 109 - (1978). [Translation from the original Russian version in Opt. Spektrosk. 44, 189 - 191 (1978).]
  18. J.B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000). [CrossRef] [PubMed]
  19. P.F. Loschialpo, D.L. Smith, D.W. Forester, F.J. Rachford, and J. Schelleng, "Electromagnetic waves focused by a negative-index planar lens," Phys. Rev. E 67, 025602 (2003). [CrossRef]
  20. P.F. Loschialpo, D.W. Forester, D.L. Smith, F.J. Rachford, and C. Monzon, "Optical properties of an ideal homogeneous causal left-handed material slab," Phys. Rev. E 70, 036605 (2004). [CrossRef]
  21. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 - 10705 (2000). [CrossRef]
  22. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylén, A. Talneau, and S. Anand, "Negative refraction at infrared wavelengths in a two-dimensional photonic crystal," Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  23. A. Martinez, H. Miguez, A. Griol, and J. Marti, "Experimental and theoretical analysis of the self-focusing of light by a photonic crystal lens," Phys. Rev. B 69, 165119 (2004). [CrossRef]
  24. K. Guven, K. Aydin, K.B. Alici, C.M. Soukoulis and E. Ozbay, "Spectral negative refraction and focusing analysis of a two-dimensional left-handed photonic crystal lens," Phys. Rev. B 70, 205125 (2004). [CrossRef]
  25. E. Ozbay, I. Bulu, K. Aydin, H. Caglayan, K.B. Alici, and K. Guven, "Highly directive radiation and negative refraction using photonic crystals," Laser Phys. 15, 217 - 224 (2005).
  26. M. Notomi, "Negative refraction in photonic crystals," Opt. Quant. Electr. 34, 133 - 143 (2002). [CrossRef]
  27. X. Wang, Z.F. Ren, and K. Kempa, "Unrestricted superlensing in a triangular two dimensional photonic crystal," Opt. Express 12, 2919 - 2924 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2919">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2919</a>. [CrossRef] [PubMed]
  28. S. Xiao, M. Qiu, Z. Ruan, S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 - 4271 (2004). [CrossRef]
  29. X. Zhang, "Image resolution depending on slab thickness and object distance in a two-dimensional photonic-crystal-based superlens," Phys. Rev. B 70, 195110 (2004). [CrossRef]
  30. X. Wang and K. Kempa, "Effects of disorder on subwavelength lensing in two-dimensional photonic crystal slabs," Phys. Rev. B 71, 085101 (2005). [CrossRef]
  31. X. Wang, Z.F. Ren, and K. Kempa, "Improved superlensing in two-dimensional photonic crystals with a basis," Appl. Phys. Lett. 86, 061105 (2005). [CrossRef]
  32. A. Martinez and J. Marti, "Analysis of wave focusing inside a negative-index photonic-crystal slab," Opt. Express 13, 2858 -2868 (2005), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2858">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-2858</a>. [CrossRef] [PubMed]
  33. C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, "All-angle negative refraction without negative effective index," Phys. Rev. B 65, 201104 (2002). [CrossRef]
  34. S. He and Z. Ruan, "A completely open cavity realized with photonic crystal wedges," J. Zhejiang Univ. SCI 6A, 355 - 357 (2005). [CrossRef]
  35. Z. Ruan and S. He, "Open cavity formed by a photonic crystal with negative effective index of refraction," Opt. Lett. 30, 2308 - 2310 (2005). [CrossRef] [PubMed]
  36. S. He, Y. Jin, Z. Ruan, and J. Kuang, "On subwavelength and open resonators involving metamaterials of negative refraction index," New Journal of Physics 7, 210 (2005). [CrossRef]
  37. J.S. Kole, M.T. Figge, and H. De Raedt, "Unconditionally stable algorithms to solve the time-dependent Maxwell equations," Phys. Rev. E 64, 066705 (2001). [CrossRef]
  38. A. Taflove and S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edition, (Artech House, MA USA, 2005).
  39. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173 - 190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]
  40. Z. Ruan, M. Qiu, S. Xiao, S. He, and L. Thylén, "Coupling between plane waves and Bloch waves in photonic crystals with negative refraction," Phys. Rev. B 71, 045111 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited