OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 893–900

Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation

Takeshi Fujisawa, Kunimasa Saitoh, Keisuke Wada, and Masanori Koshiba  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 893-900 (2006)
http://dx.doi.org/10.1364/OPEX.14.000893


View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Chromatic dispersion profile of dual-concentric-core photonic crystal fibers is optimized for broadband dispersion compensation of single mode fibers (SMFs) by using genetic algorithm incorporated with full-vector finite-element method. From the numerical results presented here, it is found that by increasing the distance between central core and outer ring core, larger negative dispersion coefficient and better dispersion slope compensation are possible. There is a tradeoff between the magnitude of negative dispersion coefficient and dispersion slope compensation due to the concave dispersion profile of dual-concentric-core photonic crystal fibers. In spite of the tradeoff, dual-concentric-core photonic crystal fibers having larger negative dispersion coefficient as well as compensating for dispersion slope of SMFs in the entire C band with large effective area can be designed.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Photonic Crystal Fibers

Citation
Takeshi Fujisawa, Kunimasa Saitoh, Keisuke Wada, and Masanori Koshiba, "Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation," Opt. Express 14, 893-900 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-893


Sort:  Journal  |  Reset  

References

  1. K. Thyagarajan, R.K. Varshney, P. Palai, A.K. Ghatak, and I.C. Goyal, "A novel design of a dispersion compensating fiber," IEEE Photonics Technol. Lett. 8, 1510-1512 (1996). [CrossRef]
  2. J.-L. Auguste, R. Jindal, J.-M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D.B. Ostrowsky, B.P. Pal, and K. Thyagarajan, "?1800 ps/(nm•km) chromatic dispersion of 1.55 ?m in dual concentric core fibre," Electron. Lett. 36, 1689-1691 (2000). [CrossRef]
  3. B.J. Mangan, F. Couny, L. Farr, A. Langford, P.J. Roberts, D.P. Williams, M. Banham, M.W. Mason, D.F. Murphy, E.A.M. Brown, H. Sabert, T.A. Birks, J.C. Knight, and P.St.J. Russel, "Slope-matched dispersion-compensating photonic crystal fibre," in Proceedings of Conference on Lasers and Electro-Optics (CLEO 2004), paper CPDD3, San Francisco, CA, (2004).
  4. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, "Dual-core photonic crystal fiber for dispersion compensation," IEEE Photonics Technol. Lett. 16, 1516-1518 (2004). [CrossRef]
  5. F. Gérôme, J.-L. Auguste, and J.-M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2005). [CrossRef]
  6. A. Huttunen and P. Torma, "Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area," Opt. Express 13, 627-635 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-627</a>. [CrossRef] [PubMed]
  7. B.P. Pal and K. Pande, "Optimization of a dual-core dispersion slope compensating fiber for DWDM transmission in the 1480-1610 nm band through G.652 single-mode fibers," Opt. Commun. 201, 335-344 (2002). [CrossRef]
  8. F. Gérôme, J.-L. Auguste, S. Février, J. Maury, J.-M. Blondy, L. Gasca, and L. Provost, "Dual concentric core dispersion compensating fiber optimized for WDM application," Electron. Lett. 41, 116-117 (2005). [CrossRef]
  9. E. Kerrinckx, L. Bigot, M. Douay, and Y. Quiquempois, "Photonic crystal fiber design by means of a genetic algorithm," Opt. Express 12, 1990-1995 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1990</a>. [CrossRef] [PubMed]
  10. F. Poletti, V. Finazzi, T.M. Monro, N.G.R. Broderick, V. Tse, and D.J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-10-3728</a>. [CrossRef] [PubMed]
  11. T. Fujisawa and M. Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Opt. Express 11, 1481-1489 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1481</a>. [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  13. G.P. Agrawal, Nonlinear fiber optics, Academic press (1995).
  14. A. Belahlou, S. Bickham, D. Chowdhury, P.D.A. Evans, J.M. Grochocinski, P. Han, A. Kobyakov, S. Kumar, G. Lutter, J.C. Mauro, Y. Mauro, M. Mlejnek, M.S.K. Muktoyuk, M.T. Murtagh, S. Raghavan, V.R.A. Sevian, N.Taylor, S. Tsuda, M. Vasilyev, and L. Wang, "Fiber design considerations for 40 Gb/s systems," J. Lightwave Technol. 20, 2290-2305 (2002). [CrossRef]
  15. G. Renversez, F. Bordas, and B.T. Kuhlmey, "Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size," Opt. Lett. 30, 1264-1266 (2005). [CrossRef] [PubMed]
  16. K. Saitoh, Y. Tsuchida, M. Koshiba, and N.A. Mortensen, "Endlessly single-mode holey fibers: the influence of core design," Opt. Express 13, 10833-10839 (2005), <a href= "http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833">http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-26-10833</a>. [CrossRef] [PubMed]
  17. Y. Tsuchida, K. Saitoh, and M. Koshiba, "Design and characterization of single-mode holey fibers with low bending losses," Opt. Express 13, 4770-4779 (2005), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-12-4770</a>. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited