OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 914–925

Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance

D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 914-925 (2006)
http://dx.doi.org/10.1364/OPEX.14.000914


View Full Text Article

Enhanced HTML    Acrobat PDF (689 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersive characteristics of a photonic crystal fiber enhanced with a liquid crystal core are studied using a planewave expansion method. Numerical results demonstrate that by appropriate design such fibers can function in a single-mode/single-polarization operation, exhibit high- or low- birefringence behavior, or switch between an on-state and an off-state (no guided modes supported). All of the above can be controlled by the application of an external electric field, the specific liquid crystal anchoring conditions and the fiber structural parameters.

© 2006 Optical Society of America

OCIS Codes
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2420) Fiber optics and optical communications : Fibers, polarization-maintaining
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Photonic Crystal Fibers

Citation
D. C. Zografopoulos, E. E. Kriezis, and T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Express 14, 914-925 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-914


Sort:  Journal  |  Reset  

References

  1. M. D. Nielsen, C. Jacobsen, N.A. Mortensen, J.R. Folkenberg, and H.R. Simonsen, "Low-loss photonic crystal fibers for transmission systems and their dispersion properties," Opt. Express 12, 1372-1376 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1372</a>. [CrossRef] [PubMed]
  2. T. Ritari, J. Tuominen, H. Ludvigsen, J.C. Petersen, T. Sørensen, T.P. Hansen, and H.R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12, 4080-4087 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-17-4080</a>. [CrossRef] [PubMed]
  3. S. Lorenz, Ch. Silberhorn, N. Korolkova, R.S. Windeler, and G. Leuchs, "Squeezed light from microstructured fibers: towards free-space quantum cryptography," Appl. Phys. B 73, 855-859 (2001). [CrossRef]
  4. J. Broeng, D. Mogilevtsev, S. Barkou, and A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Opt. Fiber Techn. 5, 305-330 (1999). [CrossRef]
  5. T.A. Birks, J.C. Knight, and P. St. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  6. T.-L. Wu and C.-H. Chao, "A novel ultraflattened dispersion photonic crystal fiber," IEEE Photonics Technol. Lett. 17, 67-69 (2005). [CrossRef]
  7. B. Zsigri, J. Lægsgaard, and A. Bjarklev, "A novel photonic crystal fibre design for dispersion compensation," J. Opt. A 6, 717-720 (2004). [CrossRef]
  8. L.P. Shen, W.-P. Huang, G.X. Chen, and S.S. Jian, "Design and optimization of photonic crystal fibers for broadband dispersion compensation," IEEE Photonics Technol. Lett. 15, 540-543 (2003). [CrossRef]
  9. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-843</a>. [CrossRef] [PubMed]
  10. A. Ferrando, E. Silvestre, and P. Andr´es, "Designing the properties of dispersion-flattened photonic crystal fibers," Opt. Express 9, 687-697 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a>. [CrossRef] [PubMed]
  11. K.P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-13-1503</a>. [CrossRef] [PubMed]
  12. G.P. Crawford, D.W. Allender, and J.W. Doane, "Surface elastic and molecular-anchoring properties of nematic liquid crystals confined to cylindrical cavities," Phys. Rev. A 45, 8693-8710 (1992). [CrossRef] [PubMed]
  13. S.V. Burylov, "Equilibrium configuration of a nematic liquid crystal confined to a cylindrical cavity," JETP 85, 873-886 (1997). [CrossRef]
  14. F. Du, Y.-Q. Lu, and S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004). [CrossRef]
  15. T.T. Larsen, A. Bjarklev, D.S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibers," Opt. Express 11, 2589-2596 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>. [CrossRef] [PubMed]
  16. E.P. Kosmidou, E.E. Kriezis, and T.D. Tsiboukis, "Analysis of tunable photonic crystal devices comprising liquid crystal materials as defects," IEEE J. Quantum Electron. 41, 657-665 (2005). [CrossRef]
  17. T.T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D.S. Hermann, J. Broeng, J. Li, and S.-T.Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers," Opt. Express 12, 5857-5871 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5857</a>. [CrossRef] [PubMed]
  18. B. Maune, M. Lon¡car, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer, and Y. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004). [CrossRef]
  19. S.G. Johnson and J.D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a>. [CrossRef] [PubMed]
  20. S.G. Johnson and J.D. Joannopoulos, "The MIT Photonic-Bands Package," <a href="http://ab-initio.mit.edu/mpb/">http://ab-initio.mit.edu/mpb/</a>.
  21. B. Bahadur, Liquid crystals: applications and uses, vol. 1 (World Scientific Publishing, 1990). [CrossRef]
  22. X. Feng, A.K. Mairaj, D.W. Hewak, and T.M. Monro, "Nonsilica glasses for holey fibers," IEEE J. Lightwave Tech. 23, 2046-2054 (2005). [CrossRef]
  23. M.J. Weber, Handbook of optical materials (CRC Press, 2003).
  24. X. Feng, T.M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, "Solid microstructured optical fiber," Opt. Express 11, 2225-2230 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2225">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2225</a>. [CrossRef] [PubMed]
  25. K. Morishita and S. Yutani, "Wavelength-insensitive couplers made of annealed dispersive fibers," IEEE J. Lightwave Technol. 17, 2356-2360 (1999). [CrossRef]
  26. Y. Jeong, B. Yang, B. Lee, H.S. Seo, S. Choi, and K. Oh, "Electrically controllable long-period liquid crystal fiber gratings," IEEE Photonics Technol. Lett. 12, 519-521 (2000). [CrossRef]
  27. A. Ferrando and J.J. Miret, "Single-polarization single-mode intraband guidance in supersquare photonic crystal fibers," Appl. Phys. Lett. 78, 3184-3186 (2001). [CrossRef]
  28. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of a low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-676</a>. [CrossRef] [PubMed]
  29. K. Saitoh and M. Koshiba, "Single-polarization single-mode photonic crystal fibers," IEEE Photonics Technol. Lett. 15, 1384-1386 (2003). [CrossRef]
  30. A. Argyros, N. Issa, I. Bassett, and M.A. van Eijkelenborg, "Microstructured optical fiber for single-polarization air guidance," Opt. Lett. 29, 20-22 (2004). [CrossRef] [PubMed]
  31. S. Gauza, J. Li, S.-T.Wu, A. Spad³o, R. Da¸browski, Y.-N. Tzeng, and K.-L. Cheng, "High birefringence and high resistivity isothiocyanate-based nematic liquid crystal mixtures," Liq. Cryst. 32, 1077-1085 (2005). [CrossRef]
  32. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, Art. 073501 (2005). [CrossRef]
  33. C. Hu and J.R. Whinnery, "Losses of a nematic liquid-crystal optical waveguide," J. Opt. Soc. Am. 64, 1424- 1432 (1974). [CrossRef]
  34. M. Green and S.J. Madden, "Low loss nematic liquid crystal cored fiber waveguides," Appl. Opt. 28, 5202-5203 (1989). [CrossRef] [PubMed]
  35. O. Fraz˜ao, J.P. Carvalho, and H.M. Salgado, "Low-loss splice in a microstructured fibre using a conventional fusion splicer," Microw. Opt. Tech. Let. 46, 172-174 (2005). [CrossRef]
  36. J. H. Chong and M.K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 11, 1365-1370 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1365">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-12-1365</a>. [CrossRef] [PubMed]
  37. S.G. Leon-Saval, T.A. Birks, N.Y. Joly, A.K. George, W.J. Wadsworth, G. Karakantzas, and P.St.J. Russell, "Splice-free interfacing of photonic crystal fibers," Opt. Lett. 30, 1629-1631 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited