OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 950–955

Chirality arising from small defects in gold nanoparticle arrays

Brian K. Canfield, Sami Kujala, Kaisa Laiho, Konstantins Jefimovs, Jari Turunen, and Martti Kauranen  »View Author Affiliations

Optics Express, Vol. 14, Issue 2, pp. 950-955 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (160 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The symmetry of metal nanostructures may be broken by their overall features or small-scale defects. To separate the roles of these two mechanisms in chiral symmetry breaking, we prepare gold nanostructures with chirality occurring on different levels. Linear optical measurements reveal small chiral signatures, whereas the chiral responses from second-harmonic generation are enormous. The responses of all structures are remarkably similar, suggesting that uncontrollable defects play an important role in symmetry breaking.

© 2006 Optical Society of America

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(260.3910) Physical optics : Metal optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Brian K. Canfield, Sami Kujala, Kaisa Laiho, Konstantins Jefimovs, Jari Turunen, and Martti Kauranen, "Chirality arising from small defects in gold nanoparticle arrays," Opt. Express 14, 950-955 (2006)

Sort:  Journal  |  Reset  


  1. H. G. Craighead and G. A. Niklasson, "Characterization and optical properties of arrays of small gold particles," Appl. Phys. Lett. 44, 1134-1136 (1984). [CrossRef]
  2. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, "Optical dichroism of lithographically designed silver nanoparticle films," Opt. Lett. 21, 1099-1101 (1996). [CrossRef] [PubMed]
  3. H. Tuovinen, M. Kauranen, K. Jefimovs, P. Vahimaa, T. Vallius, and J. Turunen, "Linear and second-order nonlinear optical properties of arrays of noncentrosymmetric gold nanoparticles," J. Nonlinear Opt. Phys. Mater. 11 421-432 (2002). [CrossRef]
  4. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4 957-961 (2004). [CrossRef]
  5. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627-1631 (2004). [CrossRef]
  6. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408 (2005). [CrossRef]
  7. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234-236 (2003). [CrossRef]
  8. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003). [CrossRef] [PubMed]
  9. S. Linden, C. Enkrich, M.Wegener, J. Zhou, T. Koschny, C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science 306, 1351-1353 (2004). [CrossRef] [PubMed]
  10. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  11. H. Ditlbacher, J. R. Krenn, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Spectrally coded optical data storage by metal nanoparticles," Opt. Lett. 25, 563-565 (2000). [CrossRef]
  12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  13. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Polarization effects in the linear and nonlinear optical responses of gold nanoparticle arrays," J. Opt. A-Pure Appl. Opt. 7, 110-117 (2005). [CrossRef]
  14. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, "Small-particle composites. I. Linear optical properties," Phys. Rev. B 53, 2425-2436 (1996). [CrossRef]
  15. V. M. Shalaev, E. Y. Poliakov, and V. A. Markel, "Small-particle composites. II. Nonlinear optical properties," Phys. Rev. B 53, 2437-2449 (1996). [CrossRef]
  16. C. Anceau, S. Brasselet, J. Zyss, and P. Gadenne, "Local second-harmonic generation enhancement on gold nanostructures probed by two-photon microscopy," Opt. Lett. 28, 713-715 (2003). [CrossRef] [PubMed]
  17. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent control of femtosecond energy localization in nanosystems," Phys. Rev. Lett. 88, 067402 (2002). [CrossRef] [PubMed]
  18. B. K. Canfield, S. Kujala, M. Kauranen, K. Jefimovs, T. Vallius, and J. Turunen, "Remarkable polarization sensitivity of gold nanoparticle arrays," Appl. Phys. Lett. 86, 183109 (2005). [CrossRef]
  19. B. K. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, "Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles," Opt. Express 12, 5418-5423 (2004), <a href="http://oe.osa.org/abstract.cfm?id=81638">http://oe.osa.org/abstract.cfm?id=81638</a> [CrossRef] [PubMed]
  20. B. Lamprecht, A. Leitner, and F. R. Aussenegg, "SHG studies of plasmon dephasing in nanoparticles," Appl. Phys. B 68, 419-423 (1999). [CrossRef]
  21. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen and Y. Svirko, "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett. 95, 227401 (2005). [CrossRef] [PubMed]
  22. J. J. Maki, M. Kauranen, and A. Persoons, "Surface second-harmonic generation from chiral materials," Phys. Rev. B 51, 1425-1434 (1995). [CrossRef]
  23. M. Kauranen, T. Verbiest, S. V. Elshocht, and A. Persoons, "Chirality in surface nonlinear optics," Opt. Mater. 9, 286-294 (1998). [CrossRef]
  24. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens," Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]
  25. S. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005). [CrossRef]
  26. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited