OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 956–969

Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture

Marcel Leutenegger, Michael Gösch, Alexandre Perentes, Patrik Hoffmann, Olivier J.F. Martin, and Theo Lasser  »View Author Affiliations

Optics Express, Vol. 14, Issue 2, pp. 956-969 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the observation of single molecule dynamics with fluorescence fluctuation spectroscopy (FFS) very low fluorophore concentrations are necessary. For in vitro measurements, this requirement is easy to fulfill. In biology however, micromolar concentrations are often encountered and may pose a real challenge to conventional FFS methods based on confocal instrumentation. We show a higher confinement of the sampling volume in the near-field of sub-wavelength sized apertures in a thin gold film. The gold apertures have been measured and characterized with fluorescence correlation spectroscopy (FCS), indicating light confinement beyond the far-field diffraction limit. We measured a reduction of the effective sampling volume by an order of magnitude compared to confocal instrumentation.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(160.3900) Materials : Metals
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(240.6490) Optics at surfaces : Spectroscopy, surface
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Marcel Leutenegger, Michael Gösch, Alexandre Perentes, Patrik Hoffmann, Olivier J. F. Martin, and Theo Lasser, "Confining the sampling volume for Fluorescence Correlation Spectroscopy using a sub-wavelength sized aperture," Opt. Express 14, 956-969 (2006)

Sort:  Journal  |  Reset  


  1. R. Rigler et al., "Fluorescence Correlation Spectroscopy with high Count Rate and low Background - Analysis of Translational Diffusion," Eur. Biophys. J. Biophys. Lett. 22, 169-175 (1993). [CrossRef]
  2. S. Weiss, "Fluorescence Spectroscopy of Single Biomolecules," Science 283, 1676-1683 (1999). [CrossRef] [PubMed]
  3. P. Kask, K. Palo, D. Ullmann, K. Gall, "Fluorescence-intensity distribution analysis and its application in biomolecular detection technology," PNAS 96, 13756-13761 (1999). [CrossRef] [PubMed]
  4. Y. Chen, J.D. Müller, P.T.C. So, E. Gratton, "The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy," Biophys. J. 77, 553-567 (1999). [CrossRef] [PubMed]
  5. L.N. Hillesheim, J.D. M¨uller, "The Photon Counting Histogram in Fluorescence Fluctuation Spectroscopy with Non-Ideal Photodetectors," Biophys. J. 85, 1948-1958 (2003). [CrossRef] [PubMed]
  6. T.A. Laurence, A.N. Kapanidis, X. Kong, D.S. Chemla, S. Weiss, "Photon Arrival-Time Interval Distribution (PAID): A Novel Tool for Analyzing Molecular Interactions," J. Phys. Chem. B 108, 3051-3067 (2004). [CrossRef]
  7. K. Starchev, J. Ricka, J. Buffle, "Noise on Fluorescence Correlation Spectroscopy," J. Coll. Interf. Science 233, 50-55 (2001). [CrossRef]
  8. D.E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974). [CrossRef]
  9. M.J. Levene, J. Korlach, S.W. Turner, M. Foquet, H.G. Craighead, W.W. Webb, "Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations," Science 299, 682-686 (2003). [CrossRef] [PubMed]
  10. M. Foquet, J. Korlach, W.R. Zipfel, W.W. Webb, H.G. Craighead, "Focal Volume Confinement by Submicrometer-Sized Fluidic Channels," Anal. Chem. 76, 1618-1626 (2004). [CrossRef] [PubMed]
  11. T. Ruckstuhl, S. Seeger, "Attoliter detection volumes by confocal total-internal-reflection fluorescence microscopy," Opt. Lett. 29, 569-571 (2004). [CrossRef] [PubMed]
  12. K. Hassler, T. Anhut, R. Rigler, M. Gösch, T. Lasser, "High Count Rates with Total Internal Reflection Fluorescence Correlation Spectroscopy," Biophys. J. 88, L1-L3 (2005). [CrossRef]
  13. K. Hassler, M. Leutenegger, P. Rigler, R. Rao, R. Rigler, M. Gösch, T. Lasser, "Total internal reflection fluorescence correlation spectroscopy (TIR-FCS) with low background and high count-rate per molecule," Opt. Express 13, 7415-7423 (2005). [CrossRef] [PubMed]
  14. M. Paulus, O.J.F. Martin, "Light propagation and scattering in stratified media: a Green's tensor approach," J. Opt. Soc. Am. A 18, 854-861 (2001). [CrossRef]
  15. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T.W. Ebbesen, P.-F. Lenne, "Enhancement of Single-Molecule Fluorescence Detection in Subwavelength Apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  16. J. Wenger, P.-F. Lenne, E. Popov, H. Rigneault, J. Dintinger, T.W. Ebbesen, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005). [CrossRef] [PubMed]
  17. D. Amarie, N.D. Rawlinson, W.L. Schaich, B. Dragnea, S.C. Jacobson, "Three-Dimensional Mapping of the Light Intensity Transmitted through Nanoapertures," Nanolett. 5, 1227-1230 (2005). [CrossRef]
  18. A. Perentes, I. Utke, B. Dwir, M. Leutenegger, T. Lasser, P. Hoffmann, F. Baida, M.P. Bernal, M. Russey, J. Salvi, D. Van Labeke, "Fabrication of arrays of sub-wavelength nano-apertures in an optically thick gold layer on glass slides for optical studies," Nanotech. 16, S273-S277 (2005). [CrossRef]
  19. O. Krichevsky, G. Bonnet, "Fluorescence correlation spectroscopy: the technique and its applications," Rep. Prog. Phys. 65, 251-297 (2002). [CrossRef]
  20. K. Bacia, I.V. Majoul, P. Schwille, "Probing the endocytic pathway in live cells using dual-color fluorescence cross-correlation analysis," Biophys. J. 83, 1184-1193 (2002). [CrossRef] [PubMed]
  21. J. Widgengren, Ü. Mets, R. Rigler, "Fluorescence correlation spectroscopy of triplet states in solution: A theoretical and experimental study," J. Phys. Chem. 99, 13368-13379 (1995). [CrossRef]
  22. T. Wohland, R. Rigler, H. Vogel, "The Standard Deviation in Fluorescence Correlation Spectroscopy," Biophys. J. 80, 2987-2999 (2001). [CrossRef] [PubMed]
  23. E. Bismuto, E. Gratton, D.C. Lamb, "Dynamics of ANS Binding to Tuna Apomyoglobin Measured with Fluorescence Correlation Spectroscopy," Biophys. J. 81, 3510-3521 (2001). [CrossRef] [PubMed]
  24. J. Enderlein, I. Gregor, D. Patra, J. Fitter, "Art and artefacts of fluorescence correlation spectroscopy," Curr. Pharmaceut. Biotech. 5, 155-161 (2004). [CrossRef]
  25. G.T. Boyd, Z.H. Yu, Y.R. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986). [CrossRef]
  26. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys. Condens. Matter 14, R597-R624 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited