OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 8974–8988

Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems

Raul I. Hernandez-Aranda, Julio C. Gutiérrez-Vega, Manuel Guizar-Sicairos, and Miguel A. Bandres  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 8974-8988 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce the generalized vector Helmholtz-Gauss (gVHzG) beams that constitute a general family of localized beam solutions of the Maxwell equations in the paraxial domain. The propagation of the electromagnetic components through axisymmetric ABCD optical systems is expressed elegantly in a coordinate-free and closed-form expression that is fully characterized by the transformation of two independent complex beam parameters. The transverse mathematical structure of the gVHzG beams is form-invariant under paraxial transformations. Any paraxial beam with the same waist size and transverse spatial frequency can be expressed as a superposition of gVHzG beams with the appropriate weight factors. This formalism can be straightforwardly applied to propagate vector Bessel-Gauss, Mathieu-Gauss, and Parabolic-Gauss beams, among others.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(140.3300) Lasers and laser optics : Laser beam shaping
(260.5430) Physical optics : Polarization
(350.5500) Other areas of optics : Propagation

ToC Category:
Diffraction and Gratings

Original Manuscript: August 2, 2006
Revised Manuscript: September 15, 2006
Manuscript Accepted: September 15, 2006
Published: October 2, 2006

Raul I. Hernandez-Aranda, Julio C. Gutiérrez-Vega, Manuel Guizar-Sicairos, and Miguel A. Bandres, "Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems," Opt. Express 14, 8974-8988 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Lax, W. H. Louisell, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys, Rev. A 11, 1365-1370 (1975). [CrossRef]
  2. L. W. Davis and G. Patsakos, "TM and TE electromagnetic beams in free space," Opt. Lett. 6, 22-23 (1981). [CrossRef] [PubMed]
  3. Z. Bouchal and M. Olivık, "Non-diffractive vector Bessel beams," J. Mod. Opt. 42, 1555-1566 (1995). [CrossRef]
  4. D. G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  5. A. A. Tovar and G. H. Clark, "Concentric-circle-grating, surface-emitting laser beam propagation in complex optical systems," J. Opt. Soc. Am. A 14, 3333-3340 (1997). [CrossRef]
  6. A. Flores-Perez, J. Hernandez-Hernandez, R. Jauregui, and K. Volke-Sepulveda, "Experimental generation and analysis of first-order TE and TM Bessel modes in free space," Opt. Lett. 31, 1732-1734 (2006). [CrossRef] [PubMed]
  7. K. Volke-Sepulveda and E. Ley-Koo, "General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states," J. Opt. A: Pure Appl. Opt.,  8, 867-877 (2006). [CrossRef]
  8. M. A. Bandres and J. C. Gutierrez-Vega, "Vector Helmholtz-Gauss and vector Laplace-Gauss beams," Opt. Lett. 30, 2155-2157 (2005). [CrossRef] [PubMed]
  9. L. J. Chu, "Electromagnetic waves in elliptic hollow pipes of metal," J. Appl. Phys. 9, 583-591 (1938). [CrossRef]
  10. R. D. Spence and C. P. Wells, "The propagation of electromagnetic waves in parabolic pipes," Phys. Rev. 62, 58-62 (1942). [CrossRef]
  11. J. C. Gutierrez-Vega and M. A. Bandres, "Helmholtz-Gauss waves," J. Opt. Soc. Am. A 22, 289-298 (2005). [CrossRef]
  12. C. Lopez-Mariscal, M. A. Bandres, and J. C. Gutierrez-Vega, "Observation of the experimental propagation properties of Helmholtz-Gauss beams," Opt. Eng. 45, 068001 (2006). [CrossRef]
  13. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004). [CrossRef] [PubMed]
  14. V. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D: Appl. Phys. 32, 1455-1461 (1999). [CrossRef]
  15. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  16. Z. Bouchal, "Nondiffracting optical beams: physical properties, experiments, and applications" Czech. J. Phys. 53,537-578 (2003). [CrossRef]
  17. L. W. Casperson, D. G. Hall, and A. A. Tovar, "Sinusoidal-Gaussian beams in complex optical systems," J. Opt. Soc. Am. A 14, 3341-3348 (1997). [CrossRef]
  18. S. Ruschin, "Modified Bessel nondiffracting beams," J. Opt. Soc. Am. A 11, 3224-3228 (1994). [CrossRef]
  19. M. Santarsiero, "Propagation of generalized Bessel-Gauss beams through ABCD optical systems," Opt. Commun. 132, 1-7 (1996). [CrossRef]
  20. S. A. Collins, "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  21. A. E. Siegman, Lasers (University Science, 1986).
  22. J. C. Gutierrez-Vega, M.D. Iturbe-Castillo, and S. Chavez-Cerda, "Alternative formulation for invariant optical fields: Mathieu beams," Opt. Lett. 25, 1493-1495 (2000). [CrossRef]
  23. M. A. Bandres, J. C. Gutierrez-Vega, and S. Chavez-Cerda, "Parabolic nondiffracting optical wave fields," Opt. Lett. 29, 44-46 (2004). [CrossRef] [PubMed]
  24. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941)
  25. P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  26. M. Guizar-Sicairos and J. C. Gutierrez-Vega, "Generalized Helmholtz-Gauss beams and its transformation by paraxial optical systems," Opt. Lett. 31, 2912-2914 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 3. Fig. 2.

Supplementary Material

» Media 1: AVI (2405 KB)     
» Media 2: AVI (2359 KB)     
» Media 3: AVI (3342 KB)     
» Media 4: AVI (3308 KB)     
» Media 5: AVI (3186 KB)     
» Media 6: AVI (2596 KB)     
» Media 7: AVI (3643 KB)     
» Media 8: AVI (2287 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited