OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9028–9035

Global characterization of optical power propagation in step-index plastic optical fibers

Javier Mateo, M. Angeles Losada, Ignacio Garcés, and Joseba Zubia  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9028-9035 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose to characterize optical power transmission in step-index plastic optical fibers by estimating fiber diffusion and attenuation as functions of the propagation angle. We assume that power flow is described by Glogeś differential equation and find a global solution that was fitted to experimental far field patterns registered using a CCD camera as a function of fiber length. The diffusion and attenuation functions obtained describe completely the fiber behavior and thus, along with the power flow equation, can be used to predict the optical power distribution for any condition.

© 2006 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 31, 2006
Revised Manuscript: September 6, 2006
Manuscript Accepted: September 11, 2006
Published: October 2, 2006

Javier Mateo, M. Angeles Losada, Ignacio Garcés, and Joseba Zubia, "Global characterization of optical power propagation in step-index plastic optical fibers," Opt. Express 14, 9028-9035 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Jiang, R. F. Shi, and A. F. Garito, "Mode coupling and equilibrium more distribution conditions in plastic optical fibers," IEEE Photon. Technol. Lett. 9,1128-1130 (1997). [CrossRef]
  2. W. A. Gambling, D. N. Payne, and H. Matsumura, "Mode conversion coefficients in Optical Fibers," Appl. Opt. 15, 1538-1542 (1975). [CrossRef]
  3. J. Zubía, G. Durana, G. Aldabaldetreku, J. Arrúe, M. A. Losada, and M. López-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibres," J. Lightwave Technol. 21, 776-781 (2003). [CrossRef]
  4. M. A. Losada, I. Garcés, J. Mateo, I. Salinas, J. Lou and J. Zubía "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibres," J. Lightwave Technol. 20, 1160-1164 (2002). [CrossRef]
  5. R. Olshansky, and S. M. Oaks, "Differential mode attenuation measurements in graded-index fibers," Appl. Opt. 17, 1830-1835 (1978). [CrossRef] [PubMed]
  6. T. Ishigure, M. Kano and Y. Koike, "Which is a more serious factor to the bandwidth of GI POF: differential mode attenuation or mode coupling?," J. Lightwave Technol. 18, 959-965 (2000). [CrossRef]
  7. S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, "Quantitative estimates of mode coupling and differential modal attenuation in perfluorinated graded-index plastic optical fiber," J. Lightwave Technol. 21, 111-121 (2003). [CrossRef]
  8. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).
  9. M. Rousseau, and L. Jeunhomme, "Numerical solution of the coupled-power equation in step-index optical fibers," IEEE Trans. Microwave Theory Technol. 25, 577-585 (1977). [CrossRef]
  10. L. Jeunhomme, M. Fraise, and J. P. Pocholle, "Propagation model for long step-index optical fibers," Appl. Opt. 15, 3040-3046 (1976). [CrossRef] [PubMed]
  11. A. Djordjevich, and S. Savovic, "Investigation of mode coupling in step index plastic optical fibers using the power flow Equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000). [CrossRef]
  12. A. Djordjevich, and S. Savovic, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. B 21, 1437-1438 (2004). [CrossRef]
  13. S. Savovic, and A. Djordjevich, "Optical power flow in plastic-clad silica fibers," Appl. Opt. 41, 7588-7591 (2002). [CrossRef]
  14. N. Hashizume, E. Okugaki, S. Suyama, and M. Tatsutsuke, "Far field pattern measurement of POF in the presence of speckle noise," in Proceedings of the International Conference on Plastic Optical Fibers and Application, XII ed., Seattle, USA (2003).
  15. M. A. Losada, J Mateo, D. Espinosa, I. Garcés and J. Zubia, "Characterisation of the far field pattern for plastic optical fibres," in Procceedings of the International Conference on Plastic Optic Fibres and Application, XIII ed., Nuremberg, Germany, (2004), pp. 458-465.
  16. R. D. Skeel, and M. Berzins, "A Method for the Spatial Discretization of Parabolic Equations in One Space Variable," SIAM J. Sci. Stat. Comp. 11, 1-32 (1990). [CrossRef]
  17. R. M. Lewis, and V. Torczon, "Pattern Search Algorithms for Bound Constrained Minimization," SIAM J. on Optimization 9, 1082-1099 (1999). [CrossRef]
  18. M. A. Losada, J. Mateo, I. Garcés, J. Zubía, J. A. Casao, and P. Pérez-Vela, "Analysis of strained plastic optical fibres," IEEE Photon. Technol. Lett. 16, 1513-1515 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited