OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9051–9070

Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems

I. Gasulla and J. Capmany  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9051-9070 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a closed-form expression for the evaluation of the transfer function of a multimode fiber (MMF) link based on the electric field propagation model. After validating the result we investigate the potential for broadband transmission in regions far from baseband. We find that MMFs offer the potential for broadband ROF transmission in the microwave and millimetre wave regions in short and middle reach distances.

© 2006 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 17, 2006
Revised Manuscript: August 30, 2006
Manuscript Accepted: September 20, 2006
Published: October 2, 2006

I. Gasulla and J. Capmany, "Transfer function of multimode fiber links using an electric field propagation model: Application to Radio over Fibre Systems," Opt. Express 14, 9051-9070 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fiber-optic communication systems, (John Wiley, 3rd edition, 2002).
  2. A. M.J. Koonen, "Novel signal multiplexing methods for integration of services in in-building broadband multimode fibre networks," in Proceedings of ISSLS, (Edinburgh, Scotland, 2004).
  3. A. M.J. Koonen, A. Ng'Oma, H. P. A. van den Boom, I. Tafur Monroy, G. D. Khoe, "New techniques for extending the capabilities of multimode fibre networks," in Proceedings of NOC, (2003) pp. 204-211.
  4. A. M. J. Koonen, H. P. A. van den Boom, F. Willems, J. W. M. Bergmans, G. D. Khoe, "Broadband multi-service in-house networks using mode group diversity multiplexing," in Proceedings of POF conference, (2002) pp. 87-90.
  5. M. Boer, C. P. Tsekrekos, A. Martinez, H. Kurniawan, J. W. Bergmans, A. M. J. Koonen, H. P. A. van den Boom, F. M. J. Willems, "A First Demonstrator For A Mode Group Diversity Multiplexing Communication System," in Proceedings of IEEE seminar on Optical Fibre Communication. and Electrical. Signal Processing, (London, England, 2005) pp. 16/1-16/5.
  6. H. R. Stuart, "Dispersive multiplexing in multimode fiber," Science 289, 305-307, (2000). [CrossRef]
  7. L. Raddatz and I. H. White, "Overcoming the Modal Bandwidth Limitation of Multimode Fiber by Using Passband Modulation," IEEE Photon. Technol. Lett. 11, 266-268, (1999). [CrossRef]
  8. S. Kanprachar and I. Jacobs, "Diversity of coding for subcarrier multiplexing on multimode fibers," IEEE Trans. Commun. 51, 1546-1553 (2003). [CrossRef]
  9. X. J. Gu, W. Mohammed, and P. W. Smith, "Demonstration of all-fiber WDM for multimode fiber local area networks," IEEE Photon. Technol. Lett. 18, 244-246 (2006). [CrossRef]
  10. E. J. Tyler, P. Kourtessis, M. Webster, E. Rochart, T. Quinlan, S. E. M. Dudley, S. D. Walker, R. V. Penty and I. H. White, "Toward Terabit-per-second capacities over multimode fiber links using SCM/WDM techniques," J. Lightwave Technol. 21, 3237-3243 (2003). [CrossRef]
  11. P. Pepeljugosky, "Next generation High-Speed Multimode Fiber Links and their specifications," in Proceedings of OFC, (Anaheim, CA, USA, 2005), paper OWH1.
  12. R. Yuen, X. N. Fernando and S. Krishnan, "Radio Over Multimode Fiber for Wireless Access," in Proceedings of. Canadian Conference on Electrical and Computer Engineering, (Ontario, Canada, 2004), pp. 1715-1718.
  13. A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, "Coherent optical MIMO (COMIMO)," J. Lightwave Technol. 23, 2410-2419 (2005). [CrossRef]
  14. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).Q1
  15. D. Marcuse, Theory of Dielectric Optical Waveguide, (Academic Press, 2nd edition, 1991).
  16. R. Olshansky, "Mode coupling effects in graded-index core fibers," Appl. Opt. 14, 935-945 (1975). [PubMed]
  17. G. Yabre, "Comprehensive Theory of Dispersion in Graded-Index Optical Fibers," J. Lightwave Technol. 18, 166-177 (2000). [CrossRef]
  18. R. Steinberg, "Pulse propagation in Multimode Fibers with Frequency-Dependent Coupling," IEEE Trans. Microwave Theory Tech. 23, 121-122 (1975). [CrossRef]
  19. K. Tatekura, K. Itoh and T. Matsumoto, "Techniques and formulations for Mode Coupling of Multimode Optical Fibers," IEEE Trans. Microwave Theory Tech. 26, 487-493 (1978). [CrossRef]
  20. T. P. Tanaka and S. Yamada, "Numerical solution of power flow in multimode W-type optical fibers," Appl. Opt. 19, 1647-1652 (1985). [CrossRef]
  21. M. J. Yadlowsky and A. R. Mickelson, "Distributed loss and mode coupling and their effect on time-dependent propagation in multimode fibers," Appl. Opt. 32, 6664-6677 (1993). [CrossRef] [PubMed]
  22. A. Djordjevich and S. Savovic, "Investigation of Mode Coupling in Step Index Plastic Optical Fibers using the Power Flow Equation," IEEE Photon. Technol. Lett. 12, 1489-1491 (2000). [CrossRef]
  23. D. Gloge, "Impulse response of Clad Optical Multimode Fibers," Bell Syst. Tech. J. 52, 801-815 (1973).Q2
  24. D. Yevick and B. Stoltz, "Effect of mode coupling on the total pulse response of perturbed optical fibers," Appl. Opt. 22, 1010-1015 (1983). [CrossRef] [PubMed]
  25. A. Djordjevich and S. Savovic, "Numerical solution of the power flow equation in step-index plastic optical fibers," J. Opt. Soc. Am. 21, 1437-1442 (2004). [CrossRef]
  26. G. Aldabaldetreku, G. Durana, J. Zubia and J. Arrue, "Analytical expression for measurement of Intrinsic Coupling Loss in Multistep Index Optical Fibers," J. Lightwave Technol. 24, 1364-1375 (2006). [CrossRef]
  27. M. A. Losada, I. Garces, J. Mateo, I. Salinas, J. Lou and J. Zubia, "Mode coupling contribution to radiation losses in curvatures for high and low numerical aperture plastic optical fibers," J. Lightwave Technol. 20, 1160-1164 (2002). [CrossRef]
  28. J. Zubia, G. Durana, G. Aldabaldetreku, J. Arrue, M. A. Losada and M. Lopez-Higuera, "New method to calculate mode conversion coefficients in SI multimode optical fibers," J. Lightwave Technol. 21, 776-781 (2003). [CrossRef]
  29. B. E. A. Saleh and R. M. Abdula, "Optical Interference and Pulse Propagation in Multimode Fibers," Fiber Integr. Opt. 5, 161-201 (1985).Q3 [CrossRef]
  30. B. E. A. Saleh and M. I. Irshid, "Coherence and intersymbol interference in Digital Fiber Optic Communication Systems," IEEE J. Quantum Electron. 18, 944-951 (1982). [CrossRef]
  31. G. Yabre, "Influence of Core Diameter on the 3-dB Bandwidth of Graded-Index Optical Fibers," J. Lightwave Technol. 18, 668-676 (2000). [CrossRef]
  32. J. Capmany, A. Martínez, B. Ortega and D. Pastor, "Transfer function of analog fiber optic systems driven by Fabry-Perot sources," J. Opt. Soc. Amer. B 22, 2099-2106 (2005). [CrossRef]
  33. J. Capmany, B. Ortega, D. Pastor and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 23, 702-723 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited