OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9083–9092

Hamilton-Jacobi equation in momentum space

Juan C. Miñano, Pablo Benítez, and Asunción Santamaría  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9083-9092 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The application of the Hamilton-Jacobi equation to isotropic optical materials leads to the well-known eikonal equation which provides the surfaces normal to the ray trajectories. The symmetry between the coordinates x =(x1,x2,x3) and the momenta p =(p1,p2,p3) in the Hamiltonian formulation of Geometrical Optics establishes a dual Hamilton-Jacobi equation for “wavefronts” in the momentum space. This equation is also an eikonal equation when the refractive index distribution has spherical symmetry. In this case, another spherical symmetric refractive index distribution may exist such that the ray trajectories in the coordinates and momentum space are exchanged (examples of this case are given: Maxwell fish-eye, Eaton lens and Luneburg lens). The relationship between the wavefronts in the coordinate and momentum space is also analyzed. Curved orthogonal coordinates are considered as well.

© 2006 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(080.2720) Geometric optics : Mathematical methods (general)
(080.2740) Geometric optics : Geometric optical design

Original Manuscript: June 30, 2006
Revised Manuscript: August 9, 2006
Manuscript Accepted: September 4, 2006
Published: October 2, 2006

Juan C. Miñano, Pablo Benítez, and Asunción Santamaría, "Hamilton-Jacobi equation in momentum space," Opt. Express 14, 9083-9092 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, (Elsevier, 2005).
  2. V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed. (Springer-Verlag, New York, 1989).
  3. J. V. José and E. J. Saletan, Classical Dynamics: A Contemporary Approach, (Cambridge University Press, 1998).
  4. G. W. Forbes, "On variational problems in parametric form," Am. J. Phys. 59, 1130-1140 (1991). [CrossRef]
  5. Wikipedia contributors, "Canonical transformation," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Canonical_transformation&oldid=65931629 (accessed June 17, 2006).
  6. O. N. Stravoudis, The Optics of Rays, Wavefronts and Caustics, (Academic, New York, 1972).
  7. M. A. Alonso and G. W. Forbes, "Generalization of Hamilton's formalism for geometrical optics," J. Opt. Soc. Am. A 12, 2744- (1995), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-12-12-2744. [CrossRef]
  8. Wikipedia contributors, "Legendre transformation," Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/w/index.php?title=Legendre_transformation&oldid=66180751 (accessed May 7, 2006).
  9. M. Born, and E. Wolf, Principles of Optics, 5th ed, (Pergamon, Oxford, 1975).
  10. S. Cornbleet, Microwave and Geometrical Optics, (Academic, 1994).
  11. H. A. Buchdahl, "Kepler problem and Maxwell fish-eye," Am. J. Phys.,  46, 840-843 (1978). [CrossRef]
  12. R. K. Luneburg, Mathematical Theory of Optics, (University of California Press, Los Angeles 1964).
  13. H. A. Buchdahl, "Luneburg lens: unitary invariance and point characteristic," J. Opt. Soc. Am. 73, 490- (1983). [CrossRef]
  14. E. W. Weisstein "Gradient." From MathWorld. http://mathworld.wolfram.com/Gradient.html.
  15. H. A. Buchdahl, "Rays in gradient-index media: separable systems," J. Opt. Soc. Am. 63, 46- (1973). [CrossRef]
  16. D. J. Struik, Lectures on Classical Differential Geometry, (Dover, New York, 1988).
  17. D. E. Blair, Inversion Theory and Conformal Mapping, (American Mathematical Society, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited