OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9113–9119

Realization of woodpile structure using optical interference holography

Yee Kwong Pang, Jeffrey Chi Wai Lee, Cheuk Ting Ho, and Wing Yim Tam  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9113-9119 (2006)
http://dx.doi.org/10.1364/OE.14.009113


View Full Text Article

Enhanced HTML    Acrobat PDF (1972 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the use of a (4+1)-beam optical interference holography technique to fabricate woodpile structures in photo-resists. The configuration consists of 4 linearly polarized side beams arranged symmetrically around a circularly polarized central beam with all the beams from the same half space, making it easily accessible experimentally. The fabricated woodpile structures are in good agreement with model simulations. Furthermore, woodpiles with the diamond symmetry are also obtained by exploiting the shrinkage of the photo-resists. Bandgaps in the visible range are also observed for the samples with and without the correct stacking of the woodpile structures.

© 2006 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication

ToC Category:
Holography

History
Original Manuscript: August 8, 2006
Revised Manuscript: September 20, 2006
Manuscript Accepted: September 25, 2006
Published: October 2, 2006

Citation
Yee Kwong Pang, Jeffrey Chi Lee, Cheuk Ting Ho, and Wing Yim Tam, "Realization of woodpile structure using optical interference holography," Opt. Express 14, 9113-9119 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Soukoulis, "Photonic band gap material," (Kluwer, Dordrecht, 1996).
  2. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  3. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  4. J. D. Joannopoulos, R. D. Meade and J. N. Winn, "Photonic crystals," (Princeton, 1995).
  5. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  6. J. Maddox, "Photonic band-gaps bite the dust," Nature 348, 481 (1990). [CrossRef]
  7. E. Yablonovitch, T. Gmitter and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  8. C. T. Chan, S. Datta, K. M. Ho, and C. M. Soukoulis, "A-7 structure: a family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994). [CrossRef]
  9. M. Maldovan and E. L. Thomas, "Diamond-structured photonic crystal," Nature Materials 3, 593-600 (2004). [CrossRef] [PubMed]
  10. J. E. G. J. Wijnhoven and W. L. Vos, "Preparation of photonic crystals made of air spheres in Titania," Science 281, 802-804 (1998). [CrossRef]
  11. E. Palacios-Lidón, A. Blanco, M. Ibisate, F. Meseguer, C. López and J. Sánchez-Dehesa, "Optical study of the full photonic band gap in silicon inverse opals," Appl. Phys. Lett. 81, 4925-4927 (2002). [CrossRef]
  12. W. Li, G. Sun, F. Tang, W. Y. Tam, J. Li, C. T. Chan and P Sheng, "Fabrication and optical characterization of gold-infiltrated silica opals," J. Phys. Condens. Matter. 17, 2177-2190 (2005). [CrossRef]
  13. F. García-Santamaría, H. T. Miyazaki, A. Urquía, M. Ibisate, M. Belmonte, N. Shinya, F. Meseguer, C. López, "Nanorobotic manipulation of microspheres for on-chip diamond architectures," Adv. Mater. 4, 1144-1147 (2002). [CrossRef]
  14. A. Chutinan and S. Noda, "Full three-dimensional photonic bandgap crystals at near- infrared wavelengths," Phys. Rev. B 57, R2006-R2008 (1998). [CrossRef]
  15. O. Toader and S. John, "Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals," Science 292, 1133-1135 (2001). [CrossRef] [PubMed]
  16. N. Yamamoto, S. Noda, and A. Sasaki, "Development of one period of a three-dimensional photonic crystal in the 5-10 µm wavelength region by wafer fusion and laser beam diffraction pattern observation techniques," Jpn. J. Appl. Phys. 36, 1907-1911 (1997). [CrossRef]
  17. S Y Lin, J G Fleming, D L Hetherington, B K Smith, R.  Biswas, K. M.  Ho, M. M.  Sigalas, W.  Zubrzycki, S. R.  Kurtz and J.  Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  18. A. Feigel, M. Veinger, B. Sfez, A. Arsh, M. Klebanov, and V. Lyubin, "Three-dimensional simple cubic woodpile photonic crystals made from chalcogenide glasses," App. Phys. Lett. 83, 4480-4482 (2003). [CrossRef]
  19. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  20. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mat. 14, 2831-2833 (2002). [CrossRef]
  21. L. Z. Cai, X. L. Yang, and Y. R. Wang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Optics Lett. 27, 900-902 (2002). [CrossRef]
  22. Yu. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  23. X. Wang, J. F. Xu, H. M. Su, Z. H. Zeng, Y. L. Chen, H. Z. Wang, Y. K. Pang and W. Y. Tam, "Three-dimensional photonic crystals fabricated by visible light holographic lithography," Appl. Phys. Lett. 82, 2212-2214 (2003). [CrossRef]
  24. X. Wang, C. Y. Ng, W. Y. Tam, C. T. Chan and P. Sheng, "Large-area two-dimensional Mesoscale Quasi-crystals," Adv. Mat. 15, 1526-1528 (2003). [CrossRef]
  25. X. Wang, J. Xu, J. C. W. Lee, Y. K. Pang, W. Y. Tam, C. T. Chan, and P. Sheng, "Realization of optical periodic quasicrystals using holographic lithography," Appl. Phys. Lett. 88, 051901 (2006). [CrossRef]
  26. Y. K. Pang, J. C. W. Lee, H. F. Lee, W. Y. Tam, C. T. Chan, and P. Sheng, "Chiral microstructures (spirals) fabrication by holographic lithography," Optics Express 13, 7615-7620 (2005). [CrossRef] [PubMed]
  27. M. Deuble, G.  Von Freymann, M.  Wegener, S.  Pereira, K.  Busch and C. M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3, 444-447 (2004). [CrossRef]
  28. M. Deubel, M.  Wegener, A. Kaso and S. John, "Direct laser writing and characterization of Slanted Pore photonic crystals," App. Phys. Lett. 85, 1895-1897 (2004). [CrossRef]
  29. S. Shoji, H. Sun, and S. Kawata, "Photofabrication of wood-pile three-dimensional photonic crystals using four-beam laser interference," Appl. Phys. Lett. 83, 608-610 (2003). [CrossRef]
  30. <jrn>D. N. Sharp, A. J. Turberfield, and R. G. Denning, "Holographic photonic crystals with diamond symmetry," Phys. Rev. B 68, 205102-1/6 (2003).</jrn> [CrossRef]
  31. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. Han, and S. Yang, "Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). [CrossRef]
  32. M. Wohlgemuth, N. Yufa, J. Hoffmann, and E. L. Thomas, "Triply Periodic Bicontinuous Cubic Microdomain Morphologies by Symmetries," Maromol. 34, 6083-6089 (2001). [CrossRef]
  33. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, "Triply periodic bicontinuous structures through interference lithography: a level set approach," J. Opt. Soc. Am. 20, 948-954 (2003). [CrossRef]
  34. <jrn>D. C. Meisel, M. Wegener, and K. Busch, "Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps," Phys. Rev. B 70, 165104-1/10 (2004).</jrn> [CrossRef]
  35. <jrn>T. Y. M. Chan, O. Toader, and S. John, "Photonic band gap templating using optical interference. Lithography," Phys. Rev. E 71, 046605-1/18 (2005).</jrn> [CrossRef]
  36. <jrn>O. Toader, T. Y. M. Chan, and S. John, "Photonic band gap architectures for holographic lithography," Phys. Rev. Lett. 92, 043905-1/4 (2004).</jrn> [CrossRef]
  37. <jrn>Y. C. Zhong, S. A. Zhu, N. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103-1/3 (2005).</jrn> [CrossRef]
  38. W. Y. Tam, "Woodpile and diamond structures by optical interference holography," http://arxiv.org/ftp/physics/papers/0607/0607092.pdf (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited