OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9142–9155

Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography

Brian E. Applegate and Joseph A. Izatt  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9142-9155 (2006)
http://dx.doi.org/10.1364/OE.14.009142


View Full Text Article

Enhanced HTML    Acrobat PDF (747 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel molecular imaging technique which combines the 3-D tomographic imaging capability of optical coherence tomography with the molecular sensitivity of pump-probe spectroscopy. This technique, based on transient absorption, is sensitive to any molecular chromophore. It is particularly promising for the many important biomarkers, such as hemoglobin, which are poor fluorophores and therefore difficult to image with current optical techniques without chemical labeling. Previous implementations of pump-probe optical coherence tomography have suffered from inefficient pump-probe schemes which hurt the sensitivity and applicability of the technique. Here we optimize the efficiency of the pump-probe approach by avoiding the steady-state kinetics and spontaneous processes exploited in the past in favor of measuring the transient absorption of fully allowed electronic transitions on very short time scales before a steady-state is achieved. In this article, we detail the optimization and characterization of the prototype system, comparing experimental results for the system sensitivity to theoretical predictions. We demonstrate in situ imaging of tissue samples with two different chromophores; the transfectable protein dsRed and the protein hemoglobin. We also demonstrate, with a simple sample vessel and a mixture of human whole blood and rhodamine 6G, the potential to use ground state recovery time to separate the contributions of multiple chromophores to the ground state recovery signal.

© 2006 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:
Imaging Systems

History
Original Manuscript: July 19, 2006
Revised Manuscript: September 5, 2006
Manuscript Accepted: September 8, 2006
Published: October 2, 2006

Virtual Issues
Vol. 1, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Brian E. Applegate and Joseph A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9142


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003). [CrossRef] [PubMed]
  2. C. Yang, M. A. Choma, L. E. Lamb, J. D. Simon, J. A. Izatt, "Protein-based molecular contrast optical coherence tomography with phytochrome as the contrast agent," Opt. Lett. 29, 1396-1398 (2004). [CrossRef] [PubMed]
  3. B. E. Applegate, C. Yang, A. M. Rollins, J. A. Izatt, "Polarization resolved second harmonic generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004). [CrossRef] [PubMed]
  4. Y. Jiang, I. Tomov, Y. Wang, Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004). [CrossRef] [PubMed]
  5. M. V. Sarunic, B. E. Applegate, J. A. Izatt, "Spectral domain second harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005). [CrossRef] [PubMed]
  6. J. S. Bredfeldt, C. Vinegoni, D. L. Marks, S. A. Boppart, "Molecularly sensitive optical coherence tomography," Opt. Lett. 30, 495-497 (2005). [CrossRef] [PubMed]
  7. C. Yang, L. E. L. McGuckin, J. D. Simon, M. A. Choma, B. E. Applegate, J. A. Izatt, "Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent," Opt. Lett. 29, 2016-2018 (2004). [CrossRef] [PubMed]
  8. B. E. Applegate, C. Yang, J. A. Izatt, "Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques," Opt. Express 13, 8146-8163 (2005). [CrossRef] [PubMed]
  9. A. L. Oldenburg, F. J.-J. Toublan, K. S. Suslick, A. Wei, S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005). [CrossRef] [PubMed]
  10. T. M. Lee, A. L. Oldenburg, S. Sitafalwalla, D. L. Marks, W. Luo, F. J.-J. Toublan, K. S. Suslick, S. A. Boppart, "Engineered Microsphere Contrast Agents for Optical Coherence Tomography," Opt. Lett. 28, 1546-1548 (2003). [CrossRef] [PubMed]
  11. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. D. Li, Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005). [CrossRef] [PubMed]
  12. M. E. Fuller, S. H. Streger, R. K. Rothmel, B. J. Mailloux, J. A. Hall, T. C. Onstott, J. K. Fredrickson, D. L. Balkwill, M. F. DeFlaun, "Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments," Appl Environ Microbiol 66, 4486-4496 (2000). [CrossRef] [PubMed]
  13. H. A. Wilson, B. E. Seligmann, T. M. Chused, "Voltage-sensitive cyanine dye fluorescence signals in lymphocytes: plasma membrane and mitochondrial components," J Cell Physiol 125, 61-71 (1985). [CrossRef] [PubMed]
  14. Z. Gong, H. Wan, T. L. Tay, H. Wang, M. Chen, T. Yan, "Development of trangenic fish for ornamental and bioreactor by strong expression of fluorescent proteins in skeletal muscle," Biochem. Biophys. Res. Commun. 308, 58-63 (2003). [CrossRef] [PubMed]
  15. R. Richards-Kortum, R. P. Rava, M. Fitzmaurice, L. L. Tong, N. B. Ratliff, J. R. Kramer, M. S. Feld, "A one-layer model of laser-induced fluorescence for diagnosis of disease in human tissue: applications to atherosclerosis," IEEE Trans. Biomed. Eng. 36, 1222-1232 (1989). [CrossRef] [PubMed]
  16. W. Demtroder, Laser Spectroscopy. (Springer: Berlin, 1996).
  17. D. Magde, R. Wong, P. G. Seybold, "Fluorescence quantum yields and their relations to lifetimes of rhodamine 6G and fluorescien in nine solvents: improved absolute standards for quantum yields," Photochem Photobiol 75, 327-334 (2002). [CrossRef] [PubMed]
  18. D. Magde, G. E. Rojas, P. G. Seybold, "Solvent dependence of the fluorescence lifetimes of xanthene dyes," Photochem Photobiol 70, 737-744 (1999). [CrossRef]
  19. O. O. Abugo, R. Nair, J. R. Lakowicz, "Fluorescence properties of rhodamine 800 in whole blood and plasma," Anal Biochem 279, 142-150 (2000). [CrossRef] [PubMed]
  20. W. A. Wyatt, F. V. Bright, G. M. Hieftje, "Characterization and Comparison of 3 Fiberoptic Sensors for Iodide Determination Based on Dynamic Fluorescence Quenching of Rhodamine-6G," Anal. Chem. 59, 2272-2276 (1987). [CrossRef]
  21. American National Standards Institute., Laser Institute of America., American National Standard for the safe use of lasers. (The Institute: Orlando, FL, 2000); p 120.
  22. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept-source and Fourier-domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  23. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited