OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9197–9202

High confinement in silicon slot waveguides with sharp bends

P. Andrew Anderson, Bradley S. Schmidt, and Michal Lipson  »View Author Affiliations


Optics Express, Vol. 14, Issue 20, pp. 9197-9202 (2006)
http://dx.doi.org/10.1364/OE.14.009197


View Full Text Article

Enhanced HTML    Acrobat PDF (371 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Slot waveguides allow for high optical confinement in a planar optical waveguide. Here we show a method for maintaining this high degree of confinement in slot waveguides with sharp bends. This high confinement can be achieved by using an asymmetric slot-based structure, where the mode in the bend remains localized in the slot region. We show that the relative power inside the slot can be as high as 28% for a 1 µm radius bend in an air-clad silicon waveguide.

© 2006 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: May 31, 2006
Revised Manuscript: September 12, 2006
Manuscript Accepted: September 13, 2006
Published: October 2, 2006

Citation
P. Andrew Anderson, Bradley S. Schmidt, and Michal Lipson, "High confinement in silicon slot waveguides with sharp bends," Opt. Express 14, 9197-9202 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-9197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Agarwal, L. Liao, J. Foresi, M. Black, X. Duan, and L. Kimerling, "Low-loss polycrystalline silicon waveguides for silicon photonics," J. Appl. Phys. 80, 6120-6123 (1996). [CrossRef]
  2. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, and R. Baets, V. Wiaux, and S. Beckx, "Basic structures for photonic integrated circuits in Silicon-on-insulator," Opt. Express,  12, 1583-1591 (2004). [CrossRef] [PubMed]
  3. R.U. Ahmad, F. Pizzuto, G.S. Camarda, R.L. Espinola, H. Rao, R.M. OsgoodJr., "Ultracompact corner-mirrors and T-branches in silicon-on-insulator," IEEE Photon. Technol. Lett. 14, 65-67 (2002). [CrossRef]
  4. D. Taillaert, P. Bienstman, and R. Baets, "Compact efficient broadband grating coupler for silicon-on-insulator waveguides," Opt. Lett. 29, 2749-2751 (2004). [CrossRef] [PubMed]
  5. K. Lee, D. Lim, A. Agarwal, D. Ripin, L. Kimerling, H. Fujimoto, and M. Morse, "Performance of polycrystalline silicon waveguide devices for compact on-chip optical interconnection", in Optical Devices for Fiber Communication, Proc. SPIE 3847, 120-125 (1999). [CrossRef]
  6. J. Foresi, P. Villeneuve, J. Ferrera, E. Thoen, G. Steinmeyer, S. Fan, J. Joannopoulos, L. Kimerling, H. Smith, and E. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997). [CrossRef]
  7. J. Niehusmann, A. Vörckel, P. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, "Ultrahigh-quality-factor silicon-on-insulator microring resonator," Opt. Lett. 29, 2861-2863 (2004). [CrossRef]
  8. B. E . little, J. S . Foresi,G. Steinmeyer, E. R. Thoen,S. T. Chu, H. A. Haus,E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 545-551 (1998).
  9. N. Tucker, H. Li, H. Tang, L. R. Dalton, Y. Liao, B. H. Robinson, A. K. Jen, J. Luo, S. Liu, M. Haller, J. Kang, T. Kim, S. Jang and B. Chen, "Recent Progress in Developing Highly Efficient and Thermally Stable Nonlinear Optical Polymers for Electro-Optics," Proc. SPIE 5351, 36-43 (2004). [CrossRef]
  10. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett.,  29, 1626-1628 (2004). [CrossRef] [PubMed]
  11. Y. A. Vlasov, S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004). [CrossRef] [PubMed]
  12. T. Baehr-Jones, M. Hochberg, C. Walker, and A. Scherer, "High-Q optical resonators in silicon-on-insulator-based slot waveguides," Appl. Phys. Lett. 86, 081101 (2005). [CrossRef]
  13. C. A. Barrios and M. Lipson, "Electrically driven silicon resonant light emitting device based on slot-waveguide," Opt. Express 13, 10092-10101 (2005). [CrossRef] [PubMed]
  14. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, and A. Scherer, "Optical modulation and detection in slotted Silicon waveguides," Opt. Express 13, 5216-5226 (2005). [CrossRef] [PubMed]
  15. C.-H. Chen, L. Pang, C.-H. Tsai, U. Levy, and Y. Fainman, "Compact and integrated TM-pass waveguide polarizer," Opt. Express 13, 5347-5352 (2005). [CrossRef] [PubMed]
  16. T. Fujisawa and M. Koshiba, "Polarization-independent optical directional coupler based on slot waveguide," Opt. Lett. 31, 56-58 (2006). [CrossRef] [PubMed]
  17. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  18. FullWAVE (RSOFT Design Group), http://www.rsoftdesign.com.
  19. N.-N. Feng, G.-R. Zhou, C. Xu, and W.-P. Huang, "Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers," J. Lightwave Technol.,  20, 1976-1980 (2002). [CrossRef]
  20. E.-G. Neumann, "Curved dielectric optical waveguides with reduced transition losses," IEE Proc.,  129, 278-280 (1982).
  21. M. K. Smit, E. C. M. Pennings, and H. Blok, "A normalized approach to the design of low-loss optical waveguide bends," J. Lightwave Technol.,  11, 1737-1742 (1993). [CrossRef]
  22. J. T. Robinson, C. Manolatou, L. Chen, and Michal Lipson, "ultrasmall mode volumes in dielectric optical microcavities," Phys. Rev. Lett. 95, 143901 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited