OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9203–9210

Electrically pumped hybrid AlGaInAs-silicon evanescent laser

Alexander W. Fang, Hyundai Park, Oded Cohen, Richard Jones, Mario J. Paniccia, and John E. Bowers  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9203-9210 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An electrically pumped light source on silicon is a key element needed for photonic integrated circuits on silicon. Here we report an electrically pumped AlGaInAs-silicon evanescent laser architecture where the laser cavity is defined solely by the silicon waveguide and needs no critical alignment to the III-V active material during fabrication via wafer bonding. This laser runs continuous-wave (c.w.) with a threshold of 65 mA, a maximum output power of 1.8 mW with a differential quantum efficiency of 12.7 % and a maximum operating temperature of 40 °C. This approach allows for 100’s of lasers to be fabricated in one bonding step, making it suitable for high volume, low-cost, integration. By varying the silicon waveguide dimensions and the composition of the III-V layer, this architecture can be extended to fabricate other active devices on silicon such as optical amplifiers, modulators and photo-detectors.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 23, 2006
Revised Manuscript: September 13, 2006
Manuscript Accepted: September 13, 2006
Published: October 2, 2006

Alexander W. Fang, Hyundai Park, Oded Cohen, Richard Jones, Mario J. Paniccia, and John E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. T. Reed, "The optical age of silicon," Nature 427,615−618 (2004).
  2. G. T. Reed, and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, Chichester, West Sussex, 2004). [CrossRef]
  3. L. Pavesi, D. J. Lockwood, eds., Silicon Photonics, (Springer-Verlag, Berlin, 2004).
  4. D. A. B. Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron. 6, 1312−1317 (2000). [CrossRef]
  5. R. S. Jacobsen, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  7. H. Rong, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  8. O. Boyraz, and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269 (2004). [CrossRef] [PubMed]
  9. R. Espinola, J. Dadap, R. Osgood, Jr., S. McNab, and Y. Vlasov, "Raman amplification in ultrasmall silicon-on-insulator wire waveguides," Opt. Express 12, 3713-3718 (2004). [CrossRef] [PubMed]
  10. S. G. Cloutier, P. A. Kossyrev, and J. Xu, "Optical gain & stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887 (2005). [CrossRef] [PubMed]
  11. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, "Optical gain in silicon nanocrystals," Nature 408, 440-444 (2000). [CrossRef] [PubMed]
  12. A. Irrera,  et al., "Electroluminescence properties of light emitting devices based on silicon nanocrystals," Physica E 16, 395-399 (2003). [CrossRef]
  13. B. Gelloz and N. Koshida, "Electroluminescence with high and stable quantum efficiency and low threshold voltage from anodically oxidized thin porous silicon diode," J. Appl. Phys. 88, 4319-4324 (2000). [CrossRef]
  14. S. Lombardo, "A Room-temperature luminescence from Er3+-implanted semi-insulating polycrystalline silicon," Appl. Phys. Lett. 63, 1942-1944 (1993). [CrossRef]
  15. K. Kato, and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE J. Sel. Tops. Quantum Electron 6, 4-13 (2000) [CrossRef]
  16. E. L. Friedrich, M. G. Oberg, B. Broberg, S. Nilsson, and S. Valette, "Hybrid integration of Semiconductor Lasers with Si-based single-mode ridge waveguides," J. Lightwave Technol. 10,336-340 (1992) [CrossRef]
  17. J. Sasaki, M. Itoh, T. Tamanuki, H. Hatakeyama, S. Kitamura, T. Shimoda, T. Kato, "Multiple-chip precise self-aligned assembly for hybrid integrated optical modules using Au-Sn solder bumps," IEEE Transactions on Advanced Packaging 24, 569-575 (2001). [CrossRef]
  18. C. Monat,  et al., "InP membrane-based microlasers on silicon wafer: microdisks vs. photonic crystal cavities," Conference Proceedings to the 2001Internation Conference on Indium Phosphide Materials FA24, 603-606 (2001)
  19. S. Mino et al. "Planar lightwave circuit platform with coplanar waveguide for opto-electronic hybrid integration," J. Lightwave Technol. 13, 2320 (1995). [CrossRef]
  20. H. T. Hattori, "Heterogeneous integration of Microdisk lasers on silicon strip Waveguides for Optical Interconnects," IEEE Photon. Technol. Lett. 18, 223-225 (2006). [CrossRef]
  21. H. Park, H., A. W. Fang, S. Kodama, and J. E. Bowers, "Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells," Opt. Express 13, 9460-9464 (2005). [CrossRef] [PubMed]
  22. A. Karim,  et al. "Super lattice barrier 1528-nm vertical-cavity laser with 85oC continuous-wave operation," IEEE Photon. Technol. Lett. 12, 1438, (2000). [CrossRef]
  23. D. Pasquariello,  et al. "Plasma-Assisted InP-to-Si Low Temperature Wafer Bonding," IEEE J. Sel. Topics Quantum Electron. 8, 118, (2002). [CrossRef]
  24. H. Boudinov, H. H. Tan, and C. Jagadish, "Electrical isolation of n-type and p-type InP layers by proton bombardment," J. Appl. Phys. 89, 5343-5347 (2001). [CrossRef]
  25. B. W. Hakki, and T. L. Paoli, "CW degradation at 300K of GaAs double-heterostructure junction lasers -II: Electronic gain," J. Appl. Phys. 44, 4113-4119 (1973) [CrossRef]
  26. N. Margalit, "High-temperature long-wavelength vertical-cavity lasers," Ph.D. Thesis, University of California Santa Barbara, (1998).
  27. R. Ramaswamy, K. N. Sivarajan, Optical networks: a practical perspective, (Academic Press, San Francisco, 2002).
  28. J. H. Marsh, and A. C. Bryce, "Fabrication of photonic integrated circuits using quantum well intermixing," Mater. Sci. Eng. B 24, 272-278, (1994). [CrossRef]
  29. J. Geske, V. Jayaraman, Y. L. Okuno, and J. E. Bowers, "Vertical and lateral heterogeneous integration," Appl. Phys. Lett. 79, 1760-2, (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited