OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9223–9237

External cavity multiwavelength semiconductor mode-locked lasers gain dynamics

Luis C. Archundia and Peter J. Delfyett  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9223-9237 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1548 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The gain dynamics of a semiconductor optical amplifier (SOA) were measured using pump-probe techniques for the amplification of 750 fs pulses, 6.5 ps pulses and multiwavelength pulses, obtained from an external cavity semiconductor mode-locked laser. Furthermore, the intracavity gain dynamics of an external cavity semiconductor mode-locked laser was measured under multiwavelength operation. The experimental results show how the inherent chirp in pulses from external cavity semiconductor mode-locked lasers result in a slow gain depletion without significant fast gain dynamics. This mitigates gain competition between wavelength channels and nonlinearities in the gain media (SOA), enabling the multiwavelength operation of external cavity semiconductor mode-locked lasers. Numerical simulations support the experimental results.

© 2006 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(250.5980) Optoelectronics : Semiconductor optical amplifiers

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 26, 2006
Revised Manuscript: September 18, 2006
Manuscript Accepted: September 20, 2006
Published: October 2, 2006

Luis C. Archundia-Berra and Peter J. Delfyett, "External cavity multiwavelength semiconductor mode-locked lasers gain dynamics," Opt. Express 14, 9223-9237 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. J. Chai, "1.36-Tb/s Spectral Slicing Source Based on a Cr4+-YAG Femtosecond Laser," J. Lightwave Technol. 23, 1319-1324 (2005). [CrossRef]
  2. J.-P. Blondel, "Massive WDM Systems: Recent developments and future prospects," in Proceedings of IEEE 27th European Conference on Optical Communications (Institute of Electrical and Electronics Engineers, New York, 2001), pp 50-53.
  3. B. Mukherjee, "WDM Optical Communication Networks: Progress and Challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000). [CrossRef]
  4. S. S. Wagner and T. E. Chapuran, "Broadband high-density WDM transmission using superluminescent diodes", Electron. Lett. 26, 696-697 (1990). [CrossRef]
  5. J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, "Spectrum-sliced fiber amplifier light source for multichannel WDM applications," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993). [CrossRef]
  6. O. Boyraz, J. Kim, M. N. Islam, F Coppinger and B. Jalali, "10 Gb/s Multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in Fibers," J. Lightwave Technol. 18, 2167-2175 (2000). [CrossRef]
  7. L. Boivin, M. Wegmueller, M. C. Nuss and W. H. Knox, "110Channels X 2.35 Gbs from a single femtosecond laser," IEEE Photon. Technol. Lett. 11, 466-468 (1999). [CrossRef]
  8. H. Shi, J. Finaly, G. A. Alphonse, J. C. Connolly, and P. J. Delfyett, "Multiwavelength 10-GHz Picosecond Pulse Generation from a Single-Stripe Semiconductor Diode Laser," IEEE Photon. Technol. Lett. 9, 1439-1441 (1997). [CrossRef]
  9. I. Nitta, J. Abeles, and P. J. Delfyett, "Hybrid wavelength-division and optical time-division multiplexed multiwavelength mode-locked semiconductor laser," Appl. Opt. 39, 6799-6805 (2000). [CrossRef]
  10. P. J. Delfyett, C. DePriest, and T. Yilmaz, "Signal processing at the speed of lightwaves," IEEE Circuit.Devic. 18, 28-35 (2002). [CrossRef]
  11. M. Mielke, G. A. Alphonse and P. J. Delfyett, "168 Channels X 6 Ghz from a Multiwavelength Mode-Locked Semiconductor Laser," IEEE Photon. Technol. Lett. 15, 501-503 (2003). [CrossRef]
  12. G. A. Alphonse, D. B. Gilbert, M. G. Harvey and M. Ettenberg, "High power superluminescent diodes," IEEE J. Quantum Electon. 24, 2454-2457 (1988). [CrossRef]
  13. P. W. Smith and Y. Silberberg, "Mode locking of semiconductor diode lasers using saturable excitonic nonlinearities," J. Opt. Soc. Am. B 2, 1228-1236 (1985). [CrossRef]
  14. P. J. Delfyett, L. T. Florez, N. Stoffel, T. Gmitter, N. C. Andeadakis, Y. Silberberg, J. P. Heritage, and G. A. Alphonse, "High-Power Ultrafast Laser Diodes," IEEE J. Quantum Electron. 28, 2203-2219 (1992). [CrossRef]
  15. B. Resan, L. C. Archundia, and P. J. Delfyett, "FROG measured high-power 185-fs pulses generated by down-chirping of the dispersion-managed breathing-mode semiconductor mode-locked laser," IEEE Photon. Technol. Lett. 17, 1384-1386 (2005). [CrossRef]
  16. E. B. Treacy, "Optical Pulse Compression with Diffraction Gratings," IEEE J. Quantum Electron. 5, 454-458 (1969). [CrossRef]
  17. K. L. Hall, G. Lenz, A. M. Darwish and E. P. Ippen, "Subpicosecond gain and index nonlinearities in InGaAsP diode lasers," Opt. Commun. 111, 589-612 (1994). [CrossRef]
  18. G. P. Agrawal and N. A. Olsson, "Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989). [CrossRef]
  19. S. Gee, R. Coffie, and P. J. Delfyett, "Intracavity gain and absorption dynamics of hybrid modelocked semiconductor lasers using multiple quantum well saturable absorbers", Appl. Phys. Lett. 71, 2569-2571 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited