OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 20 — Oct. 2, 2006
  • pp: 9269–9276

Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal

B. Ben Bakir, Ch. Seassal, X. Letartre, Ph. Regreny, M. Gendry, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli  »View Author Affiliations

Optics Express, Vol. 14, Issue 20, pp. 9269-9276 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The authors report on the design, fabrication and operation of heterogeneous and compact “2.5 D” Photonic Crystal microlaser with a single plane of InAs quantum dots as gain medium. The high quality factor photonic structures are tailored for vertical emission. The devices consist of a top two-dimensional InP Photonic Crystal Slab, a SiO2 bonding layer, and a bottom high index contrast Si/SiO2 Bragg mirror deposited on a Si wafer. Despite the fact that no more than about 5% of the quantum dots distribution effectively contribute to the modal gain, room-temperature lasing operation, around 1.5µm, was achieved by photopumping. A low effective threshold, on the order of 350µW, and a spontaneous emission factor, over 0.13, could be deduced from experiments.

© 2006 Optical Society of America

OCIS Codes
(000.0000) General : General
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.3990) Optical devices : Micro-optical devices
(230.4170) Optical devices : Multilayers
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 3, 2006
Revised Manuscript: September 20, 2006
Manuscript Accepted: September 22, 2006
Published: October 2, 2006

Badhise Ben Bakir, Christian Seassal, Xavier Letartre, Philippe Regreny, Michel Gendry, Pierre Viktorovitch, Marc Zussy, Léa Di Cioccio, and Jean-Marc Fedeli, "Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous “2.5 D” Photonic Crystal," Opt. Express 14, 9269-9276 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ch. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H.T. Hattori, J.L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "InP Bonded Membrane Photonics Components and Circuits: Toward 2.5 Dimensional Micro-Nano-Photonics," IEEE J. Sel. Top. Quantum Electron. 11,395-407 (2005). [CrossRef]
  2. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, "High-gain and low-threshold InAs quantum-dot lasers on InP," Appl. Phys. Lett. 87,243107 (2005). [CrossRef]
  3. H. Saito, K. Nishi, A. Kamei, and S. Sugou, "Low Chirp Observed in Directly Modulated Quantum Dot Lasers," IEEE photonic Technol. Lett. 12,1298-1300 (2000). [CrossRef]
  4. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, "Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing," Phys. Rev. B. 72,193303 (2005). [CrossRef]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425,944-947 (2003). [CrossRef] [PubMed]
  6. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, "Room temperature continuous-wave lasing in photonic crystal nanocavity," Opt. Express 14,6308-6315 (2006). [CrossRef] [PubMed]
  7. T. Yoshie, O.B. Shchekin, H. Chen, D.G. Deppe, and A. Scherer, "Quantum dot photonic crystal laser," Electron. Lett. 38,967-968 (2002). [CrossRef]
  8. B. Ben Bakir, Ch. Seassal, X. Letartre, P. Viktorovitch, M. Zussy, L. Di Cioccio, and J. M. Fedeli, "Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror," Appl. Phys. Lett. 88,081113 (2006). [CrossRef]
  9. M. Gendry, C. Monat, J. Brault, P. Regreny, G. Hollinger, B. Salem, G. Guillot, T. Benyattou, C. Bru-chevallier, G. Bremond, and O. Marty, "From large to low height dispersion for self-organized InAs quantum sticks emitting at 1.55mm on InP (001)," J. Appl. Phys. 95,4761-4766 (2004). [CrossRef]
  10. G. Björk, A. Karlsson, and Y. Yamamoto, "Definition of a laser threshold," Phys. Rev. A 50,1675-1680 (1994). [CrossRef] [PubMed]
  11. T. Baba, "Photonic Crystals and Microdisk Cavities Based on GaInAsP-InP System," IEEE J. Sel. Top. Quantum Electron. 3,808-830 (1997). [CrossRef]
  12. Y. Yamamoto, S. Machida, G. Björk, "A Microcavity laser with enhanced spontaneous emission," Phys. Rev. A 44,657-668 (1991). [CrossRef] [PubMed]
  13. T. Baba and D. Sano, "Low-Threshold Lasing and Purcell Effect in Microdisk Lasers at Room Temperature," IEEE J. Sel. Top. Quantum Electron. 9,1340-1346 (2003). [CrossRef]
  14. L. A. Coldren, S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, New York: Wiley (1995)
  15. P. Pottier, C. Seassal, X. Letartre, JL Leclercq, P. Viktorovitch; D. Cassagne, C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," J. Lightwave Technol. 17,2058-2062 (1999). [CrossRef]
  16. F. Raineri, C. Cojocaru, R. Raj, P. Monnier, A. Levenson, C. Seassal, X. Letartre, and P. Viktorovitch, "Tuning of a two-dimensional photonic crystal resonance via optical carrier injection," Opt. Lett. 30,64-66 (2005). [CrossRef] [PubMed]
  17. M. Fujuta, R. Ushigome, and T. Baba, "Large Spontaneous Emission Factor of 0.1 in Microdisk Injection Laser," IEEE photonic Technol. Lett. 13,403-405 (2001). [CrossRef]
  18. H. Y. Ryu, N. Notomi, E. Kuramoti, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole laser," Appl. Phys. Lett. 84,1067-1069 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited